116 research outputs found

    Plant’s gypsum affinity shapes responses to specific edaphic constraints without limiting responses to other general constraints

    Get PDF
    Aims: Harsh edaphic environments harbor species with different soil affinities. Plant’s responses to specific edaphic constraints may be compromised against responses to prevalent stresses shared with other semi-arid environments. We expect that species with high edaphic affinity may show traits to overcome harsh soil properties, while species with low affinity may respond to environmental constraints shared with arid environments. Methods: We quantified the edaphic affinity of 12 plant species co-occurring in gypsum outcrops and measured traits related to plant responses to specific gypsum constraints (rooting and water uptake depth, foliar accumulation of Ca, S and Mg), and traits related to common constraints of arid environments (water use efficiency, macronutrients foliar content). Results: Plants in gypsum outcrops differed in their strategies to face edaphic limitations. A phylogenetic informed PCA segregated species based on their foliar Ca and S accumulation and greater water uptake depths, associated with plant responses to specific gypsum limitations. Species’ gypsum affinity explained this segregation, but traits related to water or nutrient use efficiency did not contribute substantially to this axis. Conclusions: Plant’s specializations to respond to specific edaphic constraints of gypsum soils do not limit their ability to deal with other non-specific environmental constraints

    Holocene changes in precipitation seasonality in the western Mediterranean Basin: a multi-species approach using d 13 C of archaeobotanical remains

    Get PDF
    ABSTRACT: Precipitation has been of utmost importance in shaping the evolution of landscapes and human settlements in the Mediterranean. However, information on seasonal precipitation patterns through the Holocene is scarce. This study attempts to quantify the evolution of seasonal precipitation in the East Iberian Peninsula (5000 BC to AD 600) based on the carbon isotope composition (d 13 C) of archaeobotanical remains. Data on Holm oak, Aleppo pine and small-grain cereals were combined, and precipitation was inferred from models relating present-day records to the d 13 C of modern samples. Subsequently, charred grains were used as a proxy for ancient moisture during April-May, whereas oak and pine charcoals provided complementary rainfall estimates for September-December and January-August, respectively. The results reveal aridity changes throughout the Holocene in the western Mediterranean. Past spring-summer precipitation was consistently higher than at present. In contrast, autumn and early winter precipitation showed stronger fluctuations, particularly during the first millennium BC, and often exhibited values below those of the present. The high contribution of autumn precipitation to the annual water budget, typical of the present Mediterranean climate, was definitively established at the beginning of the current era. This study shows how a combination of species holding complementary environmental signals can contribute to a wider knowledge of local precipitation dynamics

    Increasing drought effects on five European pines modulate Δ13C-growth coupling along a Mediterranean altitudinal gradient.

    Get PDF
    Climate warming increases vulnerability to drought in Mediterranean water-limited forests. However, we still lack knowledge of the long-term physiological responses of coexisting pine species in these forests regarding their ability to cope with warming-induced drought stress. We investigated spatiotemporal patterns of tree performance for five isohydric pines with partially overlapping ecological niches in the eastern Iberian Peninsula along an altitudinal gradient: Pinus halepensis = P. pinaster ≤ P. nigra ≤ P. sylvestris ≤ P. uncinata. Using indexed tree-ring widths (TRWi) we assessed changes in temporal coherence of radial growth (growth synchrony, âC) over the period 1902-2011 across three elevation belts: low ≈ 1100 m; mid = 1615 m; high = 2020 m. We also examined by mixed modelling whether TRWi showed an increased coupling with leaf-level gas exchange (inferred from indexed carbon isotope discrimination, Δ13Ci) by enhanced stomatal regulation in response to an amplified regional drought stress. Increasingly negative annual water balances (decrease in annual precipitation minus evapotranspiration = -4.8 mm year−1; 1970-2011) prompted more synchronous growth of coexisting pines between low- and mid-elevation belts, with âC rising from 0.25 ± 0.04 (1902-1951) to 0.62 ± 0.05 (1962-2011). This effect was coupled with tighter stomatal regulation at mid-elevation as indicated by high correlations between TRWi and Δ13Ci (>0.60 from the mid-1970s onwards) which resembled those found at low-elevation. Simultaneously, TRWi vs. Δ13Ci uncoupling occurred at the high-elevation belt across species. Weaker growth-climate relationships as elevation increased highlighted the major role of the altitude-dependent thermal gradient in growth responsiveness to drought; however, an intensified Δ13Ci response to spring water availability across elevation belts observed from mid-1970s onwards suggested regional shifts in tree physiological activity linked to earlier seasonal drought impacts. Warming-induced drought stress is spreading to higher altitudes in Iberian pinewoods as multispecies growth is linked to progressively tighter stomatal control of water losses reflected in wood Δ13C

    Las plantas beben agua mineral

    Get PDF
    7 páginas.- Presentación elaborada para las III Jornadas IPErinas, celebradas el 11 de diciembre de 2014.Peer reviewe

    Deciduous and evergreen oaks show contrasting adaptive responses in leaf mass per area across environments

    Get PDF
    Increases in leaf mass per area (LMA) are commonly observed in response to environmental stresses and are achieved through increases in leaf thickness and/or leaf density. Here, we investigated how the two underlying components of LMA differ in relation to species native climates and phylogeny, across deciduous and evergreen species. Using a phylogenetic approach, we quantified anatomical, compositional and climatic variables from 40 deciduous and 45 evergreen Quercus species from across the Northern Hemisphere growing in a common garden. Deciduous species from shorter growing seasons tended to have leaves with lower LMA and leaf thickness than those from longer growing seasons, while the opposite pattern was found for evergreens. For both habits, LMA and thickness increased in arid environments. However, this shift was associated with increased leaf density in evergreens but reduced density in deciduous species. Deciduous and evergreen oaks showed fundamental leaf morphological differences that revealed a diverse adaptive response. While LMA in deciduous species may have diversified in tight coordination with thickness mainly modulated by aridity, diversification of LMA within evergreens appears to be dependent on the infrageneric group, with diversification in leaf thickness modulated by both aridity and cold, while diversification in leaf density is only modulated by aridity

    Nonlinear Optical studies of the Transient Coherence in the Quantum Hall System

    Full text link
    We review recent investigations of the femtosecond non-linear optical response of the two-dimensional electron gas (2DEG) in a strong magnetic field. We probe the Quantum Hall (QH) regime for filling factors ν1\nu \sim 1. Our focus is on the transient coherence induced via optical excitation and on its time evolution during early femtosecond timescales. We simultaneously study the interband and intraband coherence in this system by using a nonlinear spectroscopic technique, transient three-pulse four wave mixing optical spectroscopy, and a many-body theory. We observe striking differences in the temporal and spectral profile of the nonlinear optical signal between a modulation doped quantum well system (with the 2DEG) and a similar undoped quantum well (without a 2DEG). We attribute these qualitative differences to Coulomb correlations between the photoexcited electron-hole pairs and the 2DEG. We show, in particular, that intraband many-particle coherences assisted by the inter-Landau-level magnetoplasmon excitations of the 2DEG dominate the femtosecond nonlinear optical responce. The most striking effect of these exciton-magnetoplasmon coherences is a large off-resonant four-wave-mixing signal in the case of very low photoexcited carrier densities, not observed in the undoped system, with strong temporal oscillations and unusually symmetric temporal profile.Comment: 22 pages, 9 figures; review article to be published in Solid State Communication

    Ultrafast control of donor-bound electron spins with single detuned optical pulses

    Full text link
    The ability to control spins in semiconductors is important in a variety of fields including spintronics and quantum information processing. Due to the potentially fast dephasing times of spins in the solid state [1-3], spin control operating on the picosecond or faster timescale may be necessary. Such speeds, which are not possible to attain with standard electron spin resonance (ESR) techniques based on microwave sources, can be attained with broadband optical pulses. One promising ultrafast technique utilizes single broadband pulses detuned from resonance in a three-level Lambda system [4]. This attractive technique is robust against optical pulse imperfections and does not require a fixed optical reference phase. Here we demonstrate the principle of coherent manipulation of spins theoretically and experimentally. Using this technique, donor-bound electron spin rotations with single-pulse areas exceeding pi/4 and two-pulses areas exceeding pi/2 are demonstrated. We believe the maximum pulse areas attained do not reflect a fundamental limit of the technique and larger pulse areas could be achieved in other material systems. This technique has applications from basic solid-state ESR spectroscopy to arbitrary single-qubit rotations [4, 5] and bang-bang control[6] for quantum computation.Comment: 15 pages, 4 figures, submitted 12/2008. Since the submission of this work we have become aware of related work: J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 320: 349-352 (2008
    corecore