36 research outputs found

    Specific binding of radiolabeled Cry1Fa insecticidal protein from Bacillus thuringiensis to midgut sites in lepidopteran species

    Get PDF
    Cry1Fa insecticidal protein was successfully radiolabeled with 125I-Na. Specific binding to brush border membrane vesicles was shown for the lepidopteran species Ostrinia nubilalis, Spodoptera frugiperda, Spodoptera exigua, Helicoverpa armigera, Heliothis virescens, and Plutella xylostella. Homologous competition assays were performed to obtain equilibrium binding parameters (Kd [dissociation constant] and Rt [concentration of binding sites]) for these six insect species

    Binding Site Alteration Is Responsible for Field-Isolated Resistance to Bacillus thuringiensis Cry2A Insecticidal Proteins in Two Helicoverpa Species

    Get PDF
    Background Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II) comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac. Methodology/Principal Findings Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with 125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in 125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins. Conclusion/Significance This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported. Because we found the same mechanism of resistance in multiple strains representing several field populations, we conclude that target site alteration is the most likely means that field populations evolve resistance to Cry2 proteins in Helicoverpa spp. Our work also confirms the presence in the insect midgut of specific binding sites for this class of proteins. Characterizing the Cry2 receptors and their mutations that enable resistance could lead to the development of molecular tools to monitor resistance in the [email protected]; [email protected]

    Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda

    Get PDF
    First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations. One of such examples is the combination of Cry1A.105 with Cry1Fa and Cry2Ab to control O. nubilalis and S. frugiperda. Cry1A.105 is a chimeric protein with domains I and II and the C-terminal half of the protein from Cry1Ac, and domain III almost identical to Cry1Fa. The aim of the present study was to determine whether the chimeric Cry1A.105 has shared binding sites either with Cry1A proteins, with Cry1Fa, or with both, in O. nubilalis and in S. frugiperda. Brush-border membrane vesicles (BBMV) from last instar larval midguts were used in competition binding assays with 125I-labeled Cry1A.105, Cry1Ab, and Cry1Fa, and unlabeled Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab and Cry2Ae. The results showed that Cry1A.105, Cry1Ab, Cry1Ac and Cry1Fa competed with high affinity for the same binding sites in both insect species. However, Cry2Ab and Cry2Ae did not compete for the binding sites of Cry1 proteins. Therefore, according to our results, the development of cross-resistance among Cry1Ab/Ac, Cry1A.105, and Cry1Fa proteins is possible in these two insect species if the alteration of shared binding sites occurs. Conversely, cross-resistance between these proteins and Cry2A proteins is very unlikely in such case

    Screening and identification of vip genes in Bacillus thuringiensis strains.

    No full text
    To identify known vip genes and to detect potentially novel vip genes in a collection of 507 strains of Bacillus thuringiensis. Methods and results: Following a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) strategy, four restriction patterns were found within the vip1 family: vip1Aa1, vip1Ba1/vip1Ba2 and vip1Ca. In the screening of vip2 genes, patterns similar to those of vip2Aa1, vip2Ba1/vip2Ba2 and vip2Ac1 genes were observed. Patterns for vip3Aa1, vip3Ae2 and vip3Af1 were found among vip3 genes. Two new patterns revealed novel vip1 and vip3A genes. The observed frequency of genes belonging to vip1 and vip2 families was around 10%, whereas 48.9% of the strains showed amplification of vip3 genes. A tendency of vip and cry genes to occur together has been observed in this collection of B. thuringiensis strains. Conclusions: Ten different patterns of vip genes belonging to the three vip families and two novel vip genes have been identified in this study. Significance and impact of the study: This is the first time that vip1 and vip2 genes have been identified by PCR-RFLP. Furthermore, the results show that the strategy used in this study can lead to the classification of known vip genes as well as the identification of novel vip gene

    Variation in Susceptibility to Bacillus thuringiensis Toxins among Unselected Strains of Plutella xylostella

    No full text
    So far, the only insect that has evolved resistance in the field to Bacillus thuringiensis toxins is the diamondback moth (Plutella xylostella). Documentation and analysis of resistant strains rely on comparisons with laboratory strains that have not been exposed to B. thuringiensis toxins. Previously published reports show considerable variation among laboratories in responses of unselected laboratory strains to B. thuringiensis toxins. Because different laboratories have used different unselected strains, such variation could be caused by differences in bioassay methods among laboratories, genetic differences among unselected strains, or both. Here we tested three unselected strains against five B. thuringiensis toxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca, and Cry1Da) using two bioassay methods. Tests of the LAB-V strain from The Netherlands in different laboratories using different bioassay methods yielded only minor differences in results. In contrast, side-by-side comparisons revealed major genetic differences in susceptibility between strains. Compared with the LAB-V strain, the ROTH strain from England was 17- to 170-fold more susceptible to Cry1Aa and Cry1Ac, respectively, whereas the LAB-PS strain from Hawaii was 8-fold more susceptible to Cry1Ab and 13-fold more susceptible to Cry1Da and did not differ significantly from the LAB-V strain in response to Cry1Aa, Cry1Ac, or Cry1Ca. The relative potencies of toxins were similar among LAB-V, ROTH, and LAB-PS, with Cry1Ab and Cry1Ac being most toxic and Cry1Da being least toxic. Therefore, before choosing a standard reference strain upon which to base comparisons, it is highly advisable to perform an analysis of variation in susceptibility among field and laboratory populations
    corecore