2,355 research outputs found

    Quantum-classical transition in the Caldeira-Leggett model

    Get PDF
    The quantum-classical transition in the Caldeira-Leggett model is investigated in the framework of the functional renormalization group method. It is shown that a divergent quadratic term arises in the action due to the heat bath in the model. By removing the divergence with a frequency cutoff we considered the critical behavior of the model. The critical exponents belonging to the susceptibility and the correlation length are determined and their independence of the frequency cutoff and the renormalization scheme is shown.Comment: 8 pages, 4 figure

    Magnetic phase diagram of the Kondo lattice model with quantum localized spins

    Full text link
    The magnetic phase diagram of the ferromagnetic Kondo lattice model is determined at T=0 in 1D, 2D, and 3D for various magnitudes of the quantum mechanical localized spins ranging from S=1/2 to classical spins. We consider the ferromagnetic phase, the paramagnetic phase, and the ferromagnetic/antiferromagnetic phase separated regime. There is no significant influence of the spin quantum number on the phase boundaries except for the case S=1/2, where the model exhibits an instability of the ferromagnetic phase with respect to spin disorder. Our results give support, at least as far as the low temperature magnetic properties are concerned, to the classical treatment of the S=3/2-spins in the intensively investigated manganites, for which the ferromagnetic Kondo-lattice model is generally employed to account for magnetism.Comment: 8 pages, 6 figure

    Computer-aided Melody Note Transcription Using the Tony Software: Accuracy and Efficiency

    Get PDF
    accepteddate-added: 2015-05-24 19:18:46 +0000 date-modified: 2017-12-28 10:36:36 +0000 keywords: Tony, melody, note, transcription, open source software bdsk-url-1: https://code.soundsoftware.ac.uk/attachments/download/1423/tony-paper_preprint.pdfdate-added: 2015-05-24 19:18:46 +0000 date-modified: 2017-12-28 10:36:36 +0000 keywords: Tony, melody, note, transcription, open source software bdsk-url-1: https://code.soundsoftware.ac.uk/attachments/download/1423/tony-paper_preprint.pdfWe present Tony, a software tool for the interactive an- notation of melodies from monophonic audio recordings, and evaluate its usability and the accuracy of its note extraction method. The scientific study of acoustic performances of melodies, whether sung or played, requires the accurate transcription of notes and pitches. To achieve the desired transcription accuracy for a particular application, researchers manually correct results obtained by automatic methods. Tony is an interactive tool directly aimed at making this correction task efficient. It provides (a) state-of-the art algorithms for pitch and note estimation, (b) visual and auditory feedback for easy error-spotting, (c) an intelligent graphical user interface through which the user can rapidly correct estimation errors, (d) extensive export functions enabling further processing in other applications. We show that Tony’s built in automatic note transcription method compares favourably with existing tools. We report how long it takes to annotate recordings on a set of 96 solo vocal recordings and study the effect of piece, the number of edits made and the annotator’s increasing mastery of the software. Tony is Open Source software, with source code and compiled binaries for Windows, Mac OS X and Linux available from https://code.soundsoftware.ac.uk/projects/tony/

    Potential-energy (BCS) to kinetic-energy (BEC)-driven pairing in the attractive Hubbard model

    Full text link
    The BCS-BEC crossover within the two-dimensional attractive Hubbard model is studied by using the Cellular Dynamical Mean-Field Theory both in the normal and superconducting ground states. Short-range spatial correlations incorporated in this theory remove the normal-state quasiparticle peak and the first-order transition found in the Dynamical Mean-Field Theory, rendering the normal state crossover smooth. For UU smaller than the bandwidth, pairing is driven by the potential energy, while in the opposite case it is driven by the kinetic energy, resembling a recent optical conductivity experiment in cuprates. Phase coherence leads to the appearance of a collective Bogoliubov mode in the density-density correlation function and to the sharpening of the spectral function.Comment: 5 pages, 4 figure

    Morphologies of three-dimensional shear bands in granular media

    Full text link
    We present numerical results on spontaneous symmetry breaking strain localization in axisymmetric triaxial shear tests of granular materials. We simulated shear band formation using three-dimensional Distinct Element Method with spherical particles. We demonstrate that the local shear intensity, the angular velocity of the grains, the coordination number, and the local void ratio are correlated and any of them can be used to identify shear bands, however the latter two are less sensitive. The calculated shear band morphologies are in good agreement with those found experimentally. We show that boundary conditions play an important role. We discuss the formation mechanism of shear bands in the light of our observations and compare the results with experiments. At large strains, with enforced symmetry, we found strain hardening.Comment: 6 pages 5 figures, low resolution figures

    New measure of electron correlation

    Full text link
    We propose to quantify the "correlation" inherent in a many-electron (or many-fermion) wavefunction by comparing it to the unique uncorrelated state that has the same single-particle density operator as it does.Comment: Final version to appear in PR

    Asymmetry between the electron- and hole-doped Mott transition in the periodic Anderson model

    Full text link
    We study the doping driven Mott metal-insulator transition (MIT) in the periodic Anderson model set in the Mott-Hubbard regime. A striking asymmetry for electron or hole driven transitions is found. The electron doped MIT at larger U is similar to the one found in the single band Hubbard model, with a first order character due to coexistence of solutions. The hole doped MIT, in contrast, is second order and can be described as the delocalization of Zhang-Rice singlets.Comment: 18 pages, 19 figure
    • 

    corecore