3,194 research outputs found

    Nuclear structure calculations for neutron-star crusts

    Full text link
    The goal of this paper is to investigate properties of clusterized nuclear matter which is believed to be present in crusts of neutron stars at subnuclear densities. It is assumed that the whole system can be represented by the set of Wigner-Seitz cells, each containing a nucleus and an electron background under the condition of electroneutrality. The nuclear structure calculations are performed within the relativistic mean-field model with the NL3 parametrization. The first set of calculations is performed assuming the constant electron background. The evolution of neutron and proton density distributions was systematically studied along isotopic chains until very neutron-rich system beyond the neutron dripline. Then we have replaced the uniform electron background with the realistic electron distributions, obtained within the Thomas-Fermi approximation in a self-consistent way with the proton distributions. Finally, we have investigated the evolution of the β\beta-stability valley as well as neutron and proton driplines with the electron density.Comment: 21 pages, 14 figure

    The hepta-β-glucoside elicitor-binding proteins from legumes represent a putative receptor family

    Get PDF
    The ability of legumes to recognize and respond to β-glucan elicitors by synthesizing phytoalexins is consistent with the existence of a membrane-bound β-glucan-binding site. Related proteins of approximately 75 kDa and the corresponding mRNAs were detected in various species of legumes which respond to beta-glucans. The cDNAs for the beta-glucan-binding proteins of bean and soybean were cloned. The deduced 75-kDa proteins are predominantly hydrophilic and constitute a unique class of glucan-binding proteins with no currently recognizable functional domains. Heterologous expression of the soybean beta-glucan-binding protein in tomato cells resulted in the generation of a high-affinity binding site for the elicitor-active hepta-β-glucoside conjugate (K-d = 4.5 nM). Ligand competition experiments with the recombinant binding sites demonstrated similar ligand specificities when compared with soybean. In both soybean and transgenic tomato, membrane-bound, active forms of the glucan-binding proteins coexist with immunologically detectable, soluble but inactive forms of the proteins. Reconstitution of a soluble protein fraction into lipid vesicles regained beta-glucoside-binding activity but with lower affinity (K-d = 130 nM). We conclude that the beta-glucan elicitor receptors of legumes are composed of the 75 kDa glucan-binding proteins as the critical components for ligand-recognition, and of an as yet unknown membrane anchor constituting the plasma membrane-associated receptor complex

    An investigation of error characteristics and coding performance

    Get PDF
    The performance of forward error correcting coding schemes on errors anticipated for the Earth Observation System (EOS) Ku-band downlink are studied. The EOS transmits picture frame data to the ground via the Telemetry Data Relay Satellite System (TDRSS) to a ground-based receiver at White Sands. Due to unintentional RF interference from other systems operating in the Ku band, the noise at the receiver is non-Gaussian which may result in non-random errors output by the demodulator. That is, the downlink channel cannot be modeled by a simple memoryless Gaussian-noise channel. From previous experience, it is believed that those errors are bursty. The research proceeded by developing a computer based simulation, called Communication Link Error ANalysis (CLEAN), to model the downlink errors, forward error correcting schemes, and interleavers used with TDRSS. To date, the bulk of CLEAN was written, documented, debugged, and verified. The procedures for utilizing CLEAN to investigate code performance were established and are discussed

    Kinetic energy budgets in areas of intense convection

    Get PDF
    A kinetic energy budget analysis of the AVE-SESAME 1 period which coincided with the deadly Red River Valley tornado outbreak is presented. Horizontal flux convergence was found to be the major kinetic energy source to the region, while cross contour destruction was the major sink. Kinetic energy transformations were dominated by processes related to strong jet intrusion into the severe storm area. A kinetic energy budget of the AVE 6 period also is presented. The effects of inherent rawinsonde data errors on widely used basic kinematic parameters, including velocity divergence, vorticity advection, and kinematic vertical motion are described. In addition, an error analysis was performed in terms of the kinetic energy budget equation. Results obtained from downward integration of the continuity equation to obtain kinematic values of vertical motion are described. This alternate procedure shows promising results in severe storm situations

    Reply to Comment on "Cosmic rays, carbon dioxide, and climate"

    Get PDF
    In our analysis [Rahmstorf et al., 2004], we arrived at two main conclusions: the data of Shaviv and Veizer [2003] do not show a significant correlation of cosmic ray flux (CRF) and climate, and the authors' estimate of climate sensitivity to CO2 based on a simple regression analysis is questionable. After careful consideration of Shaviv and Veizer's comment, we want to uphold and reaffirm these conclusions. Concerning the question of correlation, we pointed out that a correlation arose only after several adjustments to the data, including shifting one of the four CRF peaks and stretching the time scale. To calculate statistical significance, we first need to compute the number of independent data points in the CRF and temperature curves being correlated, accounting for their autocorrelation. A standard estimate [Quenouille, 1952] of the number of effective data points is urn:x-wiley:00963941:media:eost14930:eost14930-math-0001 where N is the total number of data points and r1, r2 are the autocorrelations of the two series. For the curves of Shaviv and Veizer [2003], the result is NEFF = 4.8. This is consistent with the fact that these are smooth curves with four humps, and with the fact that for CRF the position of the four peaks is determined by four spiral arm crossings or four meteorite clusters, respectively; that is, by four independent data points. The number of points that enter the calculation of statistical significance of a linear correlation is (NEFF− 2), since any curves based on only two points show perfect correlation; at least three independent points are needed for a meaningful result

    Experimental Impacts into Strength-Layered Targets: Crater Morphology and Morphometry

    Get PDF
    Impact cratering is a fundamental physical process that has dominated the evolution and modification of nearly every planetary surface in the Solar System. Impact craters serve as a means to probe the subsurface structure of a planetary body and provide hints about target surface properties. By examining small craters on the lunar maria and comparing these to experimental impacts in the laboratory, Oberbeck and Quaide first suggested that crater morphology can be used to estimate the thickness of a regolith layer on top of a more competent unit. Lunar craters show a morphological progression from a simple bowl shape to flat-floored and concentric craters as crater diameter increases for a given regolith thickness. This quantitative relationship is commonly used to estimate regolith thicknesses on the lunar surface and has also been explored via numerical and experimental studies. Here we report on a series of experimental impact craters formed in targets com-posed of a thin layer of loose sand on top of a stronger substrate at the Experimental Impact Laboratory at NASA Johnson Space Center

    Experimental Impacts into Strength-Layered Targets: Ejecta Kinematics

    Get PDF
    AImpact cratering has dominated the evolution and modification of planetary surfaces through-out the history of the solar system. Impact craters can serve as probes to understanding the details of a planetary subsurface; for example, Oberbeck and Quaide, suggested that crater morphology can be used to estimate the thickness of a regolith layer on top of a more competent unit. Lunar craters show a morphological progression from a simple bowl shape to flat-floored and concentric craters as crater diameter in-creases for a given regolith thickness. The final shape of the impact crater is a result of the subsurface flow-field initiated as the projectile transfers its energy and momentum to the target surface at the moment of impact. Therefore, when a regolith layer is present over a stronger substrate, such as is the case on the lunar surface, the substrate modifies the flow-field and thereby the excavation flow of the crater, which is reflected in the morphology of the final crater. Here we report on a series of experimental impacts into targets composed of a thin layer of loose sand on top of a stronger substrate. We use the Ejection-Velocity Measurement System developed to examine the ejecta kinematics during the formation of these craters

    Fully electrically read-write device out of a ferromagnetic semiconductor

    Full text link
    We report the realization of a read-write device out of the ferromagnetic semiconductor (Ga,Mn)As as the first step to fundamentally new information processing paradigm. Writing the magnetic state is achieved by current-induced switching and read-out of the state is done by the means of the tunneling anisotropic magneto resistance (TAMR) effect. This one bit demonstrator device can be used to design a electrically programmable memory and logic device.Comment: 4 pages, 4 figure

    Metabolomics-guided isolation of anti-trypanosomal metabolites from the endophytic fungus Lasiodiplodia theobromae

    Get PDF
    Fungal endophytes offer diverse and unique secondary metabolites, making these organisms potential sources of promising drug leads. The application of high-resolution-liquid chromatography mass spectrometry and nuclear magnetic resonance-based metabolomics to fungal endophytes is practical in terms of dereplication studies and the mining of bioactive compounds. In this paper, we report the application of metabolomics in parallel with anti-trypanosomal assays to determine the ideal conditions for the medium-scale fermentation of the endophyte Lasiodiplodia theobromae. The (1)H NMR comparison between the active versus inactive fractions identified several unique chemical fingerprints belonging to the active fractions. Furthermore, by integrating high-resolution-liquid chromatography mass spectrometry data with multivariate data analysis, such as orthogonal partial least squares-discriminant analysis (OPLS-DA) and the bioactivity results of the fractions of L. theobromae, the anti-trypanosomal agents were easily discerned. With available databases such as Antibase and Dictionary of Natural Products coupled to MZmine through in-house algorithms optimized in our laboratory, the predicted metabolites were readily identified prior to isolation. Fractionation was performed on the active fractions and three known compounds were isolated, namely, cladospirone B, desmethyl-lasiodiplodin, and R-(-)-mellein. Cladospirone B and desmethyl-lasiodiplodin were among the predicted compounds generated by the OPLS-DA S-plot, and these compounds exhibited good activity against Trypanosoma brucei brucei with minimum inhibitory concentrations of 17.8 µM and 22.5 µM, respectively

    Evolutionary Dynamics on Small-Order Graphs

    Get PDF
    Abstract. We study the stochastic birth-death model for structured finite populations popularized by Lieberman et al. [Lieberman, E., Hauert, C., Nowak, M.A., 2005. Evolutionary dynamics on graphs. Nature 433, 312-316]. We consider all possible connected undirected graphs of orders three through eight. For each graph, using the Monte Carlo Markov Chain simulations, we determine the fixation probability of a mutant introduced at every possible vertex. We show that the fixation probability depends on the vertex and on the graph. A randomly placed mutant has the highest chances of fixation in a star graph, closely followed by star-like graphs. The fixation probability was lowest for regular and almost regular graphs. We also find that within a fixed graph, the fixation probability of a mutant has a negative correlation with the degree of the starting vertex. 1
    corecore