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Abstract 

 

Fungal endophytes offer diverse and unique secondary metabolites, making 

these organisms potential sources of promising drug leads. The application of High 

Resolution-Liquid Chromatography Mass Spectrometry (HR-LCMS) and Nuclear 

Magnetic Resonance (NMR) -based metabolomics to fungal endophytes is practical in 

terms of dereplication studies and the mining of bioactive compounds. In this paper we 

report the application of metabolomics in parallel with anti-trypanosomal assays to 

determine the ideal conditions for the medium-scale fermentation of the endophyte 

Lasiodiplodia theobromae. The 1H NMR comparison between the active versus inactive 

fractions identified several unique chemical fingerprints belonging to the active 

fractions.  Furthermore, by integrating HR-LCMS data with chemometric data analysis, 

such as partial least squares-discriminant analysis (PLS-DA), orthogonal PLS-DA 

(OPLS-DA), and S-plots and the bioactivity results of the fractions of L. theobromae, 

the most predictive anti-trypanosomal agents were easily discerned. With available 

databases such as Antibase and MarinLit coupled to MZmine by in-house algorithms 

optimized in our laboratory, the predictive metabolites were readily identified prior 

isolation. Fractionation was performed on one of the active fractions and three known 

compounds were isolated, namely cladospirone B, desmethyl-lasiodiplodin, and R-(-) 

mellein. Cladospirone B and desmethyl-lasiodiplodin were among the predictive 

compounds generated by the S-plot, and these compounds exhibited good activity 

against Trypanosoma brucei brucei with MICs of 17.8 µM and 22.5 µM, respectively. 

Therefore, HR-LCMS and NMR-based metabolomics proved to be a powerful decision-

making tool in mining active metabolites of L. theobromae against T. b. brucei. 
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Introduction 

 

Despite the increasing disinclination of the pharmaceutical industry to pursue natural 

products in their pipelines, statistical findings show that natural products still play a 

major role in drug discovery with more than 50% of FDA-approved drugs derived from 

natural products/mimics [1]. However, natural products research has been found to be 

too laborious, time-consuming and uneconomical, which may have led to the declining 

trend. Nevertheless, with the emergence of new and more advanced technologies such 

as genomics, transcriptomics, proteomics, metabolomics and bioinformatics, natural 

products research has become more competent in finding promising novel drugs for the 

pipeline [1-4]. 

 

The utilization of metabolomics in natural products research is increasingly powerful in 

several perspectives. Metabolomics is defined as a global study of all or a subset of 

chemical entities including either or both primary and secondary metabolites, that are 

present in living organisms (cells or tissues) under certain growth conditions [5-7]. 

Metabolomics, or metabolome mining, in natural products research has been used for 

dereplication studies of both known and new compounds in crude plant, marine or 

microbial extracts [8-18], in differentiating biologically active natural products (NPs) 

from non-active fractions [19-23], optimising the production of bioactive secondary 

metabolites, as well as in developing cultivation processes for large-scale fermentation 

and understanding their biosynthetic pathways [7,24].  

 

Endophytic fungi are microorganisms that mutually live inside plant tissues without 

causing any immediate negative effects towards the host plant for at least a part of 
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fungal life cycle [25]. The total population of endophytic fungi species has been 

estimated to be up to 1.3 million [26]. Another study places this estimate at 

approximately 1.5 million [27]. However, as of the year 2000, only 75 000 fungal 

species have been identified; the remainder are still untapped and unexplored [28]. 

Bioactive NPs derived from endophytic fungi display wide ranges of activities, such as 

(–)-oxysporidinone, (2,6-dihydroxyphenyl)pentan-1-one and (Z)-1-(2-(2-butyryl-3-

hydroxyphenoxy)-6-hydroxyphenyl)-3-hydroxybut-2-en-1-one exhibited antimicrobial 

[29,30], pullularin A and hinnuliquinone displayed antiviral [31,32],  and 

spiropreussione A  and  9-deacetoxyfumigaclavine C for anticancer  activity [33,34]. 

Compounds like cochlioquinone A, isocochlioquinone A and cercosporin exhibited 

activity against  neglected tropical diseases [35,36].  

 

Human African trypanosomiasis or sleeping sickness is a fatal vector-borne parasitic 

disease caused by Trypanosoma b. brucei and transmitted by the tsetse fly (Glossina 

spp.). This neglected tropical disease occurs only in rural areas of sub-Saharan Africa 

(Simarro, 2011). To date only a few drugs have been approved for the treatment of 

Human African trypanosomiasis. These include suramin, pentamidine, melarsoprol, 

eflornithine and the combination of nifurtomox/eflornithine. Most of the drugs are old, 

having been discovered in the 1940s and 1950s, and have adverse effects such as 

nausea, vomiting, fatigue, seizures, fever, diarrhea, hypoglycemia, abdominal cramping, 

peripheral neuropathy, hypertension, heart damage and neutropenia on the patients. For 

this reason, mining and developing new Human African trypanosomiasis drugs from 

natural products is crucial and essential because various natural sources including 

plants, microorganisms, animals, and marine organisms offer high number of NPs with 
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diverse chemical structures and novel pharmacological mechanism of action (Jacobs, 

2011).  

 

The aim of this study is to adopt an untargeted HR-LCMS (High Resolution-Liquid 

Chromatography Mass Spectrometry) and NMR-based metabolomics approach to 

determine the optimal conditions of Lasiodiplodia theobromae for medium-scale 

fermentation and also to capture and trace active anti-trypanosomal metabolites by 

using statistical multivariate data analysis of generated HR-LCMS data, such as 

Principal Component Analysis (PCA), Orthogonal Partial Least Squares-Discriminant 

and Analysis (OPLS-DA). To verify the dereplication results obtained from HR-LCMS 

data, 1D and 2D 1H NMR data were utilized. Finally, the isolation of active metabolites 

was performed based on the outcome of HR-LCMS and NMR-based metabolomics 

profile data. 

 

Results and discussion 

 

In search of the best condition for scaling up the culture of the endophyte L. theobro-

mae obtained from the leaves of V. pinnata, HR-LCMS and NMR-based metabolomics 

along with the bioassay data were utilized. The fungus was grown in solid rice cultures 

and liquid Wickerham cultures for seven, fifteen and thirty days, after which the metab-

olites were extracted. The three different incubation times were chosen based on the 

fungal life-cycle [39]. In this case, the first seven days represent the germination phase, 

while the fifteen-day and thirty-day cultures cover the hyphal growth stage and sporing 

phase, respectively, of L. theobromae. The production of secondary metabolites was 

monitored using HR-LCMS and NMR at each of the growth phases parallel to the bio-
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assay results. Based on the bioassay results (Table 1), the 30-days rice culture extract 

exhibited the strongest activity against T. b. brucei with an MIC of less than 25 ȝg/ml. 

The HR-LCMS raw data was processed using MZMine 2.10 [40]. The results of the as-

say were reproducible between the scale-up batches. Metabolite production and distri-

bution between cultures were analyzed through ion peak scatter plots (Fig. 1). Based on 

the MS data, the occurrences of the metabolites on the 7th and 15th days were similar 

while a decrease in metabolite production was observed on the 30th day. In addition, 

the ion chromatogram both in positive and negative mode revealed a different set of 

metabolites on the 30th day to those of the 7th and 15th-day extracts (Fig. 1). Moreover, 

the 1H NMR data revealed findings similar to the MS data (Fig. 2). Therefore, the 30-

day rice culture condition was chosen for scale-up and further isolation work. 

 

Table 1  

 

Fig. 1  

 

Fig. 2 

 

The medium-scale 30-day rice culture extract of L. theobromae was fractionated yield-

ing 19 fractions (LT-1 until LT-19). These were submitted for the anti-trypanosomal 

activity and 1H NMR metabolomics. The non-polar fractions LT-2 to LT-8 exhibited 

strong bioactivity, except for LT-4 which showed only moderate activity against T. b. 

brucei (Fig. 3). LT-1 was excluded from the bioassay screening because it contained 

only fatty acids as indicated by its 1H NMR data (Fig. 4). The 1H NMR data of the 19 

fractions (Fig. 4) were analyzed, and unique chemical fingerprints of the active frac-
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tions were detected. Among these active fractions, two distinctive sub-groups, LT-2 to 

LT-4 and LT-6 to LT-8, clustered together as they shared similar spectral data. Fraction 

LT-5 was a mixture of both groups. The 1H NMR spectra of fractions LT-2 to LT-5 

displayed a pair of meta-coupled aromatic protons at įH 6.23 and 6.28 (J= 2.7 Hz) and a 

multiplet peak at įH 5.15 which may be an olefinic or oxygenated methine. The upfield 

shift of the meta-coupled aromatic protons at the 6 ppm region suggested the presence 

of an electron-withdrawing group such as a hydroxyl or halogen substituent. In frac-

tions LT-5 to LT-8 two meta-coupled doublets at įH 6.18 and 6.25 (J=2.6 Hz) were ob-

served (see red arrow in Fig. 4). The proton signals between 4.2- 4.8 ppm revealed the 

presence of oxygenated methines while proton signals between 6.6 to 7.7 ppm indicated 

the presence of aromatic compounds in fractions LT 6 to LT8. 

 

Fig. 3  

 

Fig. 4  

Supervised methods of multivariate data analysis were used to analyze the similarity of 

the data sets between 19 samples. Principal component analysis (PCA) was used in ear-

lier step to observe an overview of variance between the fractions and metabolites gen-

erated from MS data and also to identify any outliers. The distribution difference of the 

type of metabolites between active vs inactive fractions of L. theobromae against T. b. 

brucei was analyzed by subjecting the data to OPLS-DA. The results of the analysis led 

to the prediction of compounds that contribute towards the anti-trypanosomal activity of 

the fractions. For the OPLS-DA models (Fig. 5a), the MS-based metabolomics data set 

was assigned as the X independent variable while the fractions’ anti-trypanosomal re-

sponse was the Y dependent variable. The quality of OPLS-DA model was measured by 
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two parameters, R2 (goodness of fit), and Q2 (predictive ability) and the model’s R2X 

was 0.261, R2Y was 0.955 and Q2 was 0.733. These results were interpreted that 26.1% 

of the X variables could be used to describe 95.5% of the variation between active frac-

tions and inactive fractions while this model has 73.3% of the average of prediction 

ability.  The value of R2Y and Q2 was greater than 50%, indicating a well-fitted model 

exhibiting good prediction (Robotti, 2016).  The quality and robustness of OPLS-DA 

model was validated by a permutation test (n=100) with the Q2-intercept value was -

0.368 (below 0.05) shows that the original model is statistically effective (Fig. 5b) 

{Haoula, 2015 #1012}.  For the OPLS-DA scores plot (Fig. 5a), the active fractions 

were clustered together versus the inactive ones. Under the active group, fractions LT-2 

to LT-5 (Group 1) and LT-6 to LT-8 (Group 2) clustered together indicating a shared 

set of metabolites while fractions LT-9 to LT-19 were observed as outliers of the group.  

The generated S-plot (Fig. 5d) determined the “end point” or unique compounds for 

each of the respective groups, indicating the metabolites that are potentially responsible 

for the bioactivity against T. b. brucei which discriminated the active from the inactive 

fractions of L. theobromae.  Eight metabolites were identified from Antibase and 

MarinLit as shown in Table 2. The end point compounds were targeted for bioassay-

guided isolation work with three active compounds in Group 1 and the remaining five 

active compounds in Group 2. 
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Fig. 5  

 

Table 2  

 

Fig. 6  

 

In Group 1, the active metabolites listed from the dereplication step of the HR-LCMS 

data were identified as palmarumycin CP17 (5), cladospirone B (6) and desmethyl-

lasiodiplodin (8). Further analysis of the 1H-1H COSY NMR spectrum of fraction LT-3 

revealed substructures belonging to the predicted active metabolites. For example, the 

correlation of the meta-coupled aromatic protons at įH 6.23 and 6.28, as well as that of 

the methyl doublet at įH 1.35 with one oxygenated methine proton at įH 5.15 which fur-

ther correlated with the aliphatic chain were characteristics of the desmethyl-

lasiodiplodin structure (8) (see Fig. 7). Substructures of palmarumycin CP17 and 

cladospirone B were elucidated in the same manner. 

 

Fig. 7  

 

A similar approach was used for Group 2. Fraction LT-7 was selected based on the 

OPLS-DA data which indicated the bioactive metabolite. Among these metabolites, the 

structure of the compound 6-oxo-de-O-methyllasiodiplodin (2) was confirmed by its 

COSY spectral data, which exhibited correlations similar to desmethyl-lasiodiplodin 

(8), as shown in Figure 8a. In the aromatic region, the COSY spectrum revealed corre-

lations for preussomerin-C (Figure 8b). 
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Fig. 8  

Isolation and purification of the compounds in Group 1 was performed by high-

throughput MPLC. Three known compounds were isolated and elucidated based on 

their NMR and MS data as cladospirone B (6) [43], desmethyl-lasiodiplodin (8) [44], 

and R-(-)-mellein (9) [45]. The isolation of cladospirone B (6) and desmethyl-

lasiodiplodin (8) confirmed the putative identification of the metabolites in Group 1 

predicted earlier by the S-plot of the OPLS-DA model. R-(-)-mellein (9) is structurally 

close analogue of 6,8-dihydroxy-3-methylisocoumarin (1). All isolated compounds 

were tested against T. b. brucei, and cladospirone B (6) and desmethyl-lasiodiplodin (8) 

had MICs of 17.8 and 22.5 µM, respectively. All three metabolites were checked again 

in the S-plot and R-(-)-mellein was located in the middle of the plot suggesting that the 

anti-trypanosomal activity would be less (Fig. 9); this is indeed the case as confirmed 

by the bioassay results. Due to the limited amount of sample, however, palmarumycin 

CP17 was not isolated. Desmethyl-lasiodiplodin (8) has been known to exhibit anti-

cancer activity against MCF-7 via apoptosis with an IC50 seven-fold more potent than 

its toxicity on normal cells [46].  On the other hand, cladospirone B (6) has been report-

ed to be inactive in antibacterial and antifungal assays [45]. Further isolation and purifi-

cation of five other active metabolites from Group 2 is still on-going. 

 

Fig. 9  

 

Table 3  

 

In our screening program, we observed that the crude extract of L. theobromae from 

agar plates showed anti-trypanosomal activity against T. b. brucei. In order to find the 
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optimal conditions to grow L. theobromae, HR-LCMS-based metabolomics was 

applied, which resulted in the selection of solid rice culture for 30 days as the best 

conditions for medium-scale fermentation. Fractionation was performed on the crude 

extract, and based on the 1D 1H NMR data comparison of 19 fractions several unique 

chemical fingerprints in the active fractions were highlighted. Furthermore, by utilizing 

the HR-LCMS data for chemometric analysis such as OPLS-DA, an S-plot and 

consequently, a set of the metabolites that were predicted to be active was generated. 

All predictive metabolites were easily identified with the aid of databases such as 

AntiBase and MarinLit, which were coupled to MZmine by in-house algorithms. The 

application of 1H NMR and COSY allowed the detection of the predictive metabolites 

within the active fractions as well as the confirmation of the dereplication results 

obtained from the HR-LCMS data. Further isolation of secondary metabolites was 

performed on fraction LT-2 (active fraction in Group 1). Three known compounds were 

isolated and identified as cladospirone B (6), desmethyl-lasiodiplodin (8) and R-(-)-

mellein (9).  The isolation of cladospirone B (6) and desmethyl-lasiodiplodin (8) 

confirmed the putative identification of the metabolites in Group 1 predicted earlier by 

the S-plot of the OPLS-DA model. To our best knowledge, this is the first report of 

isolation of cladospirone B (6) from L .theobromae. It is also the first report to indicate 

the good anti-trypanosomal activity of cladospirone B (6) and desmethyl-lasiodiplodin 

(8) against T. b. brucei with MICs of 17.8 and 22.5 µM, in comparison with suramin 

(MIC value of 0.1 ± 0 ȝM) respectively. Our strategy of emphasizing HR-LCMS and 

NMR-based metabolomics to search for active anti-trypanosomal compounds has 

therefore proven to be effective. In conclusion, this study determined that the 

combination of HR-LCMS and NMR-based metabolomics is a powerful and 

advantageous decision-making tool in mining active metabolites of L. theobromae 
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against T. b. brucei and is also promising for implementation in other drug discovery 

programs elsewhere. 

 

Materials and methods 

 

Fungal sampling  

The fungus L. theobromae was isolated from fresh healthy leaves of Vitex pinnata 

collected in April 2011 near Kuala Terengganu, Malaysia. The plant was identified by 

Dr. Nashriyah Mat from the Faculty of Bioresources and Food Industry, Universiti 

Sultan Zainal Abidin and voucher specimen was deposited (collection number VP 01).   

Samples were kept in zip lock bags and stored at 4°C until the isolation of endophytic 

fungi was performed four days later. The surfaces of the leaves and stems were 

sterilised with 70% iso-propanol for two minutes and subsequently rinsed in sterile 

water. Small tissue samples from inside the leaves and stems were cut aseptically and 

pressed onto agar plates (composition of isolation medium: 15 g/L malt extract, 15 g/L 

agar, and 0.2 g/L chloramphenicol in distilled water, pH 7.4-7.8, adjusted with 10% 

NaOH or 36.5% HCl). Chloramphenicol, ≥98% purity (Sigma Aldrich) was added to 

inhibit bacterial growth. The plates were left for a few days until fungal growth was 

observed. Reinoculation onto new malt agar plates was repeated several times until pure 

strains were attained. 

 

Identification of fungal strains  

The fungal strain was identified using DNA amplification and sequencing of the 

internal transcribed spacer (ITS) region as described previously [47]. The sequence data 

has been submitted to GenBank with accession number KC960898. The fungal strain 
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was identified as Lasiodiplodia theobromae. A voucher strain was submitted and kept 

at the Natural Product Metabolomics Laboratory, SIPBS.  

 

Small and medium-scale fermentation 

The fungal strain was cultivated on malt agar plates for seven days at 30°C.  The 

colonies and agar were cut into small pieces and were placed in liquid or solid media. 

The liquid medium used was Wickerham medium, consisting of 3 g yeast extract, 3 g 

malt extract, 5 g peptone, 10 g glucose, distilled water added up to 1000 mL in 2L 

Erlenmeyer flasks, pH 7.2-7.4, adjusted with 10% NaOH or 36.5% HCl. The solid 

medium used was rice medium, with 100 g of long grain rice and 100 mL of distilled 

water autoclaved together in 1L Erlenmeyer flasks. The strain was grown for three 

different incubation times: seven, fifteen and thirty days, under static conditions at room 

temperature. For medium-scale fermentation, L. theobromae was cultivated in 1L flasks 

using the optimal conditions as determined by the small-scale cultures. In this case, the 

growth of the fungus on rice medium for 30 days under static conditions was 

determined to be the most favorable condition for the production of anti-trypanosomal 

metabolites. 

 

Extraction and Isolation of Pure Compounds 

The medium-scale rice cultures were extracted with ethyl acetate and homogenized as 

finely as possible using a T18 Basic Ultra-Turrax (IKA) at maximum speed. These were 

then kept overnight. The extract was subsequently dried under vacuo using a rotary 

evaporator (Buchi Labortechnik AG). The crude extract (5.0 g) was then partitioned 

with 10% n-hexane and 90% methanol to remove fatty acids. The extract containing 

methanol-soluble compounds (2.0 g) was collected for further isolation work. The 
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fractionation of the methanol extract was accomplished using Medium Pressure Liquid 

Chromatography (MPLC). Linear gradient elution was employed with hexane (A) and 

ethyl acetate (B) as the mobile phase at a flow rate of 20 mL/min. A pre-packed silica 

column (20–45 ȝm, 23 x 110 mm, Silica VersaPak cartridge) was used. It was 

connected to a Buchi Pump Manager C-615 coupled to binary pumps (Buchi Modules 

C-601). 100% A was run for 5 min, followed by 100% A to 100% B for 20 min, and 

finishing with 100% B for the last 5 min. The total run time was 30 min. Fractions were 

collected in collection tubes automatically every 2 mL using a fraction collector Frac 

920 (GE Healthcare Bio-Sciences AB). Fractions with similar TLC profiles were 

pooled together, yielding a total of nineteen fractions. Fraction LT-2 (435 mg) was 

further subjected to MPLC on a pre-packed silica column (20–45 ȝm, 23 x 53 mm, 

Silica VersaPak cartridge) utilizing an isocratic gradient system (80% n-hexane : 20% 

ethyl acetate) for 30 min at a flow rate of 20 mL/min. In total, 300 collection tubes of 

fractions (2 mL in each tube) were collected automatically and using their TLC profiles. 

Similar fractions were pooled, resulting in 17 fractions and giving three known 

compounds 6 (3 mg), 8 (73 mg) and 9 (11 mg). 

 

In vitro anti-trypanosomal assay 

The samples were prepared to a final concentration of 10 mg/mL (stock solution) by 

being dissolved in the appropriate amount of DMSO. To screen for in-vitro activity, a 

concentration of 200 µg/mL was used. This was achieved by diluting the stock solution 

1 in 10 with HMI-9 (drug solution). 4 µL of drug solution was transferred to 96 µL of 

HMI-9 in the 96-well plate. 100 µL of trypanosome suspension, consisting of T. b. 

brucei S427 blood stream form at 3 x 104 trypanosomes/mL, were then added to the 96-

well plate to make the final concentration of the compounds ranged from 100 ȝg/mL to 
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0.17 ȝg/mL. DMSO was used as the negative control (concentration of 1 to 0.002%) 

and suramin (Calbiochem-Novabiochem Co.) was selected as the positive control 

(concentration of 1 to 0.008 µM). The plate was incubated for 48 hours at 37මC, 5% 

CO2 with a humidified atmosphere, after which 20 µL of Alamar blue was added. The 

plate was again incubated for another 24 hours under the same conditions. The 

fluorescence was measured using a Wallac Victor microplate reader (PerkinElmer) with 

excitation at 530 nm and emission at 590 nm. The results were calculated as 

percentages of control values. All samples that exhibited > 90% inhibition were 

selected for the minimum inhibitory concentration (MIC) assay to determine the MIC 

value. 

 

NMR Instrumentation 

One-and two-dimensional 1H and 13C NMR spectra were recorded at 400 MHz on a 

JEOL-LA400 FT-NMR spectrometer system with a 40TH5AT/FG probe (JEOL LTD.). 

Compounds 6 and 8 were reconstituted in deuterated chloroform (CDCl3) while 

compound 9 was reconstituted in deuterated DMSO (DMSO-d6).  

 

HR-LCMS Procedure 

HR-LCMS was measured using an Accela 600 HPLC pump with Accela autosampler 

and UV/Vis detector (Thermo Scientific) and Orbitrap Exactive mass spectrometer 

(Thermo Fisher Scientific Inc). Analysis of samples was done using similar protocols 

described previously [23,47,48]. 

 

HR-LCMS data processing 
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Initially the raw HR-LCMS data were sliced into two data sets according to ionization 

mode using the MassConvert tool from ProteoWizard (ProteoWizard Homepage) 

(http://proteowizard.sourceforge.net/). The sliced data were imported to MZMine 2.10 

(http://sourceforge.net/projects/mzmine/), a software developed for the differential 

analysis of mass spectrometry data (Pluskal) The data processing step was performed in 

the same manner as explained by (Abdelmohsen, 2014) albeit with slightly modified 

parameters. In this analysis, the data set was crop-filtered from 0.1 to 35 min and the 

retention time normalizer was not applied because only one batch of data was used.  

 

Statistical Analysis 

MS spectral data were converted to an ASCII text file and imported to MS-Excel. The 

data was sorted to exclude background peaks that belonged to the MeOH blank. The 

sorted data were then exported to the SIMCA-P software 14.0 version (Umetrics). 

Pareto scaling was employed on the MS data set. Finally, Principal Component 

Analysis (PCA), orthogonal PLS-DA (OPLS-DA) and S-plot were performed. 

 

Supporting information  

The 1H, 13C NMR and HMBC and ESI-MS data of isolated compounds are available as 

Supporting Information. 
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Figure Legends 

 

Fig. 1 Scatter plot of the ion peaks of the L. theobromae extracts from different days A. 

in positive ionization and B. in negative ionization. 

 

Fig. 2 The 1H NMR data of L. theobromae extracts obtained from solid rice culture at 

three different incubation periods (solvent a is DMSO-d6; b is Chloroform-d). The 30-

day rice culture extract could only be fully dissolved in chloroform indicating the com-

pounds occurring in this extract are semi non-polar. 

 

Fig. 3 Anti-trypanosomal activity of L. theobromae fractions against T. b. brucei. LT: 

L. theobromae extract as positive control; LT2-LT19: L. theobromae fractions. 

 

Fig. 4 Above: The 1H NMR spectra of the 19 fractions; Below: The expansion of the 

1H NMR data of active anti-trypanosome fractions highlighting several unique chemical 

fingerprints found only in these fractions. 

 

Fig. 5 Chemometric analysis of L. theobromae fractions and anti-trypanosomal activity 

data correlation. A) The score scatter plot of OPLS-DA shows the samples were 

grouped based on their bioactivity. B) The permutation test result of the OPLS-DA 

model. C) The loading scatter plot of OPLS-DA shows the m/z values of active metabo-

lites D) The S-plot generated from the OPLS-DA model shows the end point com-

pounds that are the most predictive metabolites responsible for the bioactivity (high-

lighted in red). 
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Fig. 6 Chemical structures of unique metabolites (1-8) predicted from the S-plot and 

further secondary metabolites (6, 8-9) isolated from an active fraction of L. theobromae 

(Group 1).  

 

Fig. 7 The 1H-1H COSY correlation found in fraction LT-3 (Group 1) confirmed the 

substructure of desmethyl-lasiodiplodin. 

 

Fig. 8 The 1H-1H COSY spectrum of fraction LT-7 (Group 2) shows partial 

correlations of a) 6-Oxo-de-O-methyllasiodiplodin and b) preussomerin-C to confirm 

the presence of these metabolites determined from the dereplication of HR-LCMS data. 

 

Fig. 9 Three isolated compounds from L. theobromae labelled in the S-plot. R-(-)- 

mellein was in the middle of the plot, suggesting less anti-trypanosomal activity for this 

compound.  

 



25 

Table 1  Antitrypanosomal activity of L. theobromae extracts derived from V. pinnata 

in different types of media and incubation periods. MIC was only determined for the 

bioactive extracts 

  T. b. brucei T. b. brucei 

Sample 20 ȝg/ml 

MIC Average ± Std Dev 

(n=4)   

 

  % of viability  

LT-LC-7 112.3 Not tested 

LT-LC-15 106.3 Not tested 

LT-LC-30 126.0 Not tested 

LT-RC-7 103.9 Not tested 

LT-RC-15 94.3 Not tested 

LT-RC-30 1.4 25 ±  1.3 ȝg/ml 

Suramin Not tested 0.1 ± 0 ȝM 

*LT- L. theobromae 
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Table 2 List of unique metabolites of L. theobromae active fractions obtained from S-

plot “end-point” data shown on Figure 3d. (P=positive mode; N=negative mode) 

 

Ionization 

Mode MS m/z 

Rt 

(min) 

Chemical 

Formula Name Group 

N 191.035 11.32 C10H8O4 6,8-Dihydroxy-3-methylisocoumarin(1) 2 

2 

2 

2 

2 

1 

1 
2 

2 

1 
1 

1 

N 291.124 13.17 C16H20O5 6-Oxo-de-O-methyllasiodiplodin (2) 

P 293.139 13.71 C16H20O5 6-Oxo-de-O-methyllasiodiplodin (2) 

N 395.077 13.60 C21H16O8 Preussomerin-C (3) 

N 363.051 14.61 C20H12O7 Preussomerin-H (4) 

N 333.077 17.61 C20H14O5 Palmarumycin CP17 (5) 

N 349.072 13.71 C20H14O6 Cladospirone B (6) 

P 321.17 19.14 C18H24O5 Phomopsin B (7) 

N 319.155 19.16 C18H24O5 Phomopsin B (7) 

N 277.144 21.79 C16H22O4 Desmethyl-lasiodiplodin (8) 

P 279.159 21.80 C16H22O4 Desmethyl-lasiodiplodin (8) 

N 555.296 21.79  Complex of 277.144 
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Table 3 Antitrypanosomal activity of isolated compounds obtained from L. theobromae 

fermented in solid rice culture for thirty days. 

Compound Antitrypanosomal activity 

(T. b. brucei) 

MIC Average ± Std Dev (n=4)  

 (ʅM) 

Cladospirone-B 6 

Desmethyl-lasiodiplodin 8 

R-(-)- mellein 9 

Suramin 

17.8 ± 0 

22.5 ± 1.50 

>100 ± 2.75 

0.1 ± 0 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6   
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Fig. 7  
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Fig. 8 
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Fig. 9   
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