218 research outputs found

    A 12 GHz satellite video receiver: Low noise, low cost prototype model for TV reception from broadcast satellites

    Get PDF
    A 12-channel synchronous phase lock video receiver consisting of an outdoor downconverter unit and an indoor demodulator unit was developed to provide both low noise performance and low cost in production quantities of 1000 units. The prototype receiver can be mass produced at a cost under $1540 without sacrificing system performance. The receiver also has the capability of selecting any of the twelve assigned satellite broadcast channels in the frequency range 11.7 to 12.2 GHz

    229Th the Bridge Between Nuclear and Atomic Interactions

    Get PDF
    The precise measurement of time has been a goal of physicists for centuries. With every new increase in our ability to measure time we have discovered new phenomena. The most advanced clocks available to us currently are atomic clocks that use electronic transitions to track the passage of time. In this proposal, I put forward the framework for the first nuclear clock estimated to be 1000 to 10000 times more precise than the current atomic clocks. This research will explore in detail the atomic nuclear interactions and help perfect and refine current atomic-nuclear interaction models. The realization of a {sup 229}Th nuclear clock will allow tests of cosmology by measuring the change of the fine structure constant as a function of time. The results of these experiments could dramatically alter our view of the universe, its past and future evolution. Precision clocks - with fundamental physics applications - require a long-lived quantum transition (two-level system) that is immune to external perturbations. Nuclear transitions would be better suited than atomic transitions for these applications except that nuclear transitions are typically much higher in energy and therefore cannot be accessed with table-top lasers. There is, however, one promising nuclear transition: the doublet between the ground and first excited states of the {sup 229}Th nucleus discovered by Helmer and Reich. This doublet has an energy splitting of 7.6 {+-} 0.5 eV, a spin difference of 1 h-bar, and an excited state half-life that could be as long as hours. A precision clock based on the {sup 229}Th nuclear doublet has been proposed by Peik et al. Their design is similar to the ion clock research being conducted at NIST in Boulder, CO. However, the NIST researchers use atomic transitions for their frequency standards. In the {sup 229}Th nuclear doublet transition is the frequency standard while atomic transitions are used to cool the ions and for probing the state of the {sup 229}Th nucleus. Recently, Campbell et al. have trapped and cooled {sup 232}Th{sup 3+} at Georgia Institute of Technology. This is a large step forward in the realization of a nuclear clock. The Georgia Tech group is already a collaborator on this project and we are in discussions with the NIST Boulder group about collaboration. In order to determine the suitability of the {sup 229}Th nuclear doublet for a precision clock, the half-life of the excited-state needs to be measured. Current estimates of the half-life vary from 10 {micro}s to 1000 hours. The longer the half-life, the narrower the natural linewidth of the state and the more desirable the transition is for potential applications. In this proposal, I outline the necessary research to be conducted to determine the half-life and exact wavelength of the nuclear doublet transition in {sup 229}Th. This research will lead to a deeper understanding of atomic-nuclear interactions important for our knowledge of high energy density science. It will provide a spectroscopy measurement of the lowest known nuclear transition ever and open the doorway for the development of a nuclear clock with unprecedented precision

    Letter Report: LAW Simulant Development for Cast Stone Screening Test

    Get PDF
    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second facility will be needed for the expected volume of additional LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with waste acceptance criteria for the IDF disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long term performance of the waste form in the IDF disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. A testing program was developed in fiscal year (FY) 2012 describing in some detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW (Westsik et al. 2012). Included within Westsik et al. (2012) is a section on the near-term needs to address Tri-Party Agreement Milestone M-062-40ZZ. The objectives of the testing program to be conducted in FY 2013 and FY 2014 are to: β€’ Determine an acceptable formulation for the LAW Cast Stone waste form. β€’ Evaluate sources of dry materials for preparing the LAW Cast Stone. β€’ Demonstrate the robustness of the Cast Stone waste form for a range of LAW compositions. β€’ Demonstrate the robustness of the formulation for variability in the Cast Stone process. β€’ Provide Cast Stone contaminant release data for PA and risk assessment evaluations. The first step in determining an acceptable formulation for the LAW Cast Stone waste form is to conduct screening tests to examine expected ranges in pretreated LAW composition, waste stream concentrations, dry-materials sources, and mix ratios of waste feed to dry blend. A statistically designed test matrix will be used to evaluate the effects of these key parameters on the properties of the Cast Stone as it is initially prepared and after curing. The second phase of testing will focus on selection of a baseline Cast Stone formulation for LAW and demonstrating that Cast Stone can meet expected waste form requirements for disposal in the IDF. It is expected that this testing will use the results of the screening tests to define a smaller suite of tests to refine the composition of the baseline Cast Stone formulation (e.g. waste concentration, water to dry mix ratio, waste loading)

    Surrogate Measurement of the \u3csup\u3e238\u3c/sup\u3ePu(\u3cem\u3en,f\u3c/em\u3e\u3c/em\u3e) Cross Section

    Get PDF
    The neutron-induced fission cross section of 238Pu was determined using the surrogate ratio method. The (n,f) cross section over an equivalent neutron energy range 5–20 MeV was deduced from inelastic Ξ±-induced fission reactions on 239Pu, with 235U(Ξ±,Ξ±β€²f) and 236U(Ξ±,Ξ±β€²f) used as references. These reference reactions reflect 234U(n,f) and 235U(n,f) yields, respectively. The deduced 238Pu(n,f) cross section agrees well with standard data libraries up to ~10 MeV, although larger values are seen at higher energies. The difference at higher energies is less than 20%

    Phylogenetic Relationships and Evolutionary Patterns of the Order Collodaria (Radiolaria)

    Get PDF
    Collodaria are the only group of Radiolaria that has a colonial lifestyle. This group is potentially the most important plankton in the oligotrophic ocean because of its large biomass and the high primary productivity associated with the numerous symbionts inside a cell or colony. The evolution of Collodaria could thus be related to the changes in paleo-productivity that have affected organic carbon fixation in the oligotrophic ocean. However, the fossil record of Collodaria is insufficient to trace their abundance through geological time, because most collodarians do not have silicified shells. Recently, molecular phylogeny based on nuclear small sub-unit ribosomal DNA (SSU rDNA) confirmed Collodaria to be one of five orders of Radiolaria, though the relationship among collodarians is still unresolved because of inadequate taxonomic sampling. Our phylogenetic analysis has revealed four novel collodarian sequences, on the basis of which collodarians can be divided into four clades that correspond to taxonomic grouping at the family level: Thalassicollidae, Collozoidae, Collosphaeridae, and Collophidae. Comparison of the results of our phylogenetic analyses with the morphological characteristics of each collodarian family suggests that the first ancestral collodarians had a solitary lifestyle and left no silica deposits. The timing of events estimated from molecular divergence calculations indicates that naked collodarian lineages first appeared around 45.6 million years (Ma) ago, coincident with the diversification of diatoms in the pelagic oceans. Colonial collodarians appeared after the formation of the present ocean circulation system and the development of oligotrophic conditions in the equatorial Pacific (ca. 33.4 Ma ago). The divergence of colonial collodarians probably caused a shift in the efficiency of primary production during this period

    Collaborative Action of Brca1 and CtIP in Elimination of Covalent Modifications from Double-Strand Breaks to Facilitate Subsequent Break Repair

    Get PDF
    Topoisomerase inhibitors such as camptothecin and etoposide are used as anti-cancer drugs and induce double-strand breaks (DSBs) in genomic DNA in cycling cells. These DSBs are often covalently bound with polypeptides at the 3β€² and 5β€² ends. Such modifications must be eliminated before DSB repair can take place, but it remains elusive which nucleases are involved in this process. Previous studies show that CtIP plays a critical role in the generation of 3β€² single-strand overhang at β€œclean” DSBs, thus initiating homologous recombination (HR)–dependent DSB repair. To analyze the function of CtIP in detail, we conditionally disrupted the CtIP gene in the chicken DT40 cell line. We found that CtIP is essential for cellular proliferation as well as for the formation of 3β€² single-strand overhang, similar to what is observed in DT40 cells deficient in the Mre11/Rad50/Nbs1 complex. We also generated DT40 cell line harboring CtIP with an alanine substitution at residue Ser332, which is required for interaction with BRCA1. Although the resulting CtIPS332A/βˆ’/βˆ’ cells exhibited accumulation of RPA and Rad51 upon DNA damage, and were proficient in HR, they showed a marked hypersensitivity to camptothecin and etoposide in comparison with CtIP+/βˆ’/βˆ’ cells. Finally, CtIPS332A/βˆ’/βˆ’BRCA1βˆ’/βˆ’ and CtIP+/βˆ’/βˆ’BRCA1βˆ’/βˆ’ showed similar sensitivities to these reagents. Taken together, our data indicate that, in addition to its function in HR, CtIP plays a role in cellular tolerance to topoisomerase inhibitors. We propose that the BRCA1-CtIP complex plays a role in the nuclease-mediated elimination of oligonucleotides covalently bound to polypeptides from DSBs, thereby facilitating subsequent DSB repair

    Feeding behavior of the ctenophore Thalassocalyce inconstans : revision of anatomy of the order Thalassocalycida

    Get PDF
    Β© 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Marine Biology 156 (2009): 1049-1056, doi:10.1007/s00227-009-1149-6.Behavioral observations using a remotely operated vehicle (ROV) in the Gulf of California in March, 2003, provided insights into the vertical distribution, feeding and anatomy of the rare and delicate ctenophore Thalassocalyce inconstans. Additional archived ROV video records from the Monterey Bay Aquarium Research Institute of 288 sightings of T. inconstans and 2,437 individual observations of euphausiids in the Gulf of California and Monterey Canyon between 1989 and 2005 were examined to determine ctenophore and euphausiid prey depth distributions with respect to temperature and dissolved oxygen concentration [dO]. In the Gulf of California most ctenophores (96.9%) were above 350 m, the top of the oxygen minimum layer. In Monterey Canyon the ctenophores were more widely distributed throughout the water column, including the hypoxic zone, to depths as great as 3,500 m. Computer-aided behavioral analysis of two video records of the capture of euphausiids by T. inconstans showed that the ctenophore contracted its bell almost instantly (0.5 s), transforming its flattened, hemispherical resting shape into a closed bi-lobed globe in which seawater and prey were engulfed. Euphausiids entrapped within the globe displayed a previously undescribed escape response for krill (β€˜probing behavior’), in which they hovered and gently probed the inner surfaces of the globe with antennae without stimulating further contraction by the ctenophore. Such rapid bell contraction could be effected only by a peripheral sphincter muscle even though the presence of circumferential ring musculature was unknown for the Phylum Ctenophora. Thereafter, several live T. inconstans were collected by hand off Barbados and microscopic observations confirmed that assumption.Supported by the David and Lucile Packard Foundation and NOAA Grant #NA06OAR4600091
    • …
    corecore