7,107 research outputs found

    Top effective operators at the ILC

    Get PDF
    We investigate the effect of top trilinear operators in t tbar production at the ILC. We find that the sensitivity to these operators largely surpasses the one achievable by the LHC either in neutral or charged current processes, allowing to probe new physics scales up to 4.5 TeV for a centre of mass energy of 500 GeV. We show how the use of beam polarisation and an eventual energy upgrade to 1 TeV allow to disentangle all effective operator contributions to the Ztt and gamma tt vertices.Comment: LaTeX 13 pages. Typos corrected. Final version in JHE

    Top effective operators at the ILC

    Get PDF
    We investigate the effect of top trilinear operators in t tbar production at the ILC. We find that the sensitivity to these operators largely surpasses the one achievable by the LHC either in neutral or charged current processes, allowing to probe new physics scales up to 4.5 TeV for a centre of mass energy of 500 GeV. We show how the use of beam polarisation and an eventual energy upgrade to 1 TeV allow to disentangle all effective operator contributions to the Ztt and gamma tt vertices.Comment: LaTeX 13 pages. Typos corrected. Final version in JHE

    Shedding light on the ttˉt \bar t asymmetry: the photon handle

    Get PDF
    We investigate a charge asymmetry in ttˉγt \bar t \gamma production at the LHC that provides complementary information to the measured asymmetries in ttˉt \bar t production. We estimate the experimental uncertainty in its measurement at the LHC with 8 and 14 TeV. For new physics models that simultaneously reproduce the asymmetry excess in ttˉt \bar t at the Tevatron and the SM-like asymmetry at the LHC, the measurement in ttˉγt \bar t \gamma at the LHC could exhibit significant deviations with respect to the SM prediction.Comment: LaTeX 15 page

    Constraints on Mass Spectrum of Fourth Generation Fermions and Higgs Bosons

    Full text link
    We reanalyze constraints on the mass spectrum of the chiral fourth generation fermions and the Higgs bosons for the standard model (SM4) and the two Higgs doublet model (THDM). We find that the Higgs mass in the SM4 should be larger than roughly the fourth generation up-type quark mass, while the light CP even Higgs mass in the THDM can be smaller. Various mass spectra of the fourth generation fermions and the Higgs bosons are allowed. The phenomenology of the fourth generation models is still rich.Comment: 15 pages, 16 figures; some points clarified, references added, to appear in Phys.Rev.

    Electroweak constraints on warped models with custodial symmetry

    Get PDF
    It has been recently argued that realistic models with warped extra dimensions can have Kaluza-Klein particles accessible at the Large Hadron Collider if a custodial symmetry, SU(2)_V \times P_{LR}, is used to protect the T parameter and the coupling of the left-handed bottom quark to the Z gauge boson. In this article we emphasize that such a symmetry implies that the loop corrections to both the T parameter and the Z b_L \bar{b}_L coupling are calculable. In general, these corrections are correlated, can be sizable, and should be considered to determine the allowed parameter space region in models with warped extra dimensions and custodial symmetry, including Randall-Sundrum models with a fundamental Higgs, models of gauge-Higgs unification and Higgsless models. As an example, we derive the constraints that arise on a representative model of gauge-Higgs unification from a global fit to the precision electroweak observables. A scan over the parameter space typically leads to a lower bound on the Kaluza-Klein excitations of the gauge bosons of about 2-3 TeV, depending on the configuration. In the fermionic sector one can have Kaluza-Klein excitations with masses of a few hundred GeV. We present the constraints on these light fermions from recent Tevatron searches, and explore interesting discovery channels at the LHC.Comment: 38 pages, 8 figure

    Light custodians in natural composite Higgs models

    Get PDF
    We present a class of composite Higgs models arising from a warped extra dimension that can satisfy all the electroweak precision tests in a significant portion of their parameter space. A custodial symmetry plays a crucial role in keeping the largest corrections to the electroweak observables below their experimental limits. In these models the heaviness of the top quark is not only essential to trigger the electroweak symmetry breaking, but it also implies that the lowest top resonance and its custodial partners, the custodians, are significantly lighter than the other resonances. These custodians are the trademark of these scenarios. They are exotic colored fermions of electromagnetic charges 5/3, 2/3 and -1/3, with masses predicted roughly in the range 500-1500 GeV. We discuss their production and detection at the LHC.Comment: 23 pages, 2 figure

    Scalar FCNC and rare top decays in a two Higgs doublet model "for the top"

    Full text link
    In the so called two Higgs doublet model for the top-quark (T2HDM), first suggested by Das and Kao, the top quark receives a special status, which endows it with a naturally large mass, and also potentially gives rise to large flavor changing neutral currents (FCNC) only in the up-quark sector. In this paper we calculate the branching ratio (BR) for the rare decays t->ch and h->tc (h is a neutral Higgs) in the T2HDM, at tree level and at 1-loop when it exceeds the tree-level. We compare our results to predictions from other versions of 2HDM's and find that the scalar FCNC in the T2HDM can play a significant role in these decays. In particular, the 1-loop mediated decays can be significantly enhanced in the T2HDM compared to the 2HDM of types I and II, in some instances reaching BR~10^-4 which is within the detectable level at the LHC.Comment: added two references. 15 pages, 14 figure

    Top quark tensor couplings

    Get PDF
    We compute the real and imaginary parts of the one-loop electroweak contributions to the left and right tensorial anomalous couplings of the tbWtbW vertex in the Standard Model (SM). For both tensorial couplings we find that the real part of the electroweak SM correction is close to 10% of the leading contribution given by the QCD gluon exchange. We also find that the electroweak real and imaginary parts for the anomalous right coupling are almost of the same order of magnitude. The one loop SM prediction for the real part of the left coupling is close to the 3σ\sigma discovery limit derived from bsγb\rightarrow s \gamma. Besides, taking into account that the predictions of new physics interactions are also at the level of a few percents when compared with the one loop QCD gluon exchange, these electroweak corrections should be taken into account in order to disentangle new physics effects from the standard ones. These anomalous tensorial couplings of the top quark will be investigated at the LHC in the near future where sensitivity to these contributions may be achieved.Comment: 16 pages, 2 figure
    corecore