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Abstract

It has been recently argued that realistic models with warped extra dimensions can have Kaluza-

Klein particles accessible at the Large Hadron Collider if a custodial symmetry, SU(2)V × PLR, is

used to protect the T parameter and the coupling of the left-handed bottom quark to the Z gauge

boson. In this article we emphasize that such a symmetry implies that the loop corrections to both

the T parameter and the ZbLb̄L coupling are calculable. In general, these corrections are correlated,

can be sizable, and should be considered to determine the allowed parameter space region in models

with warped extra dimensions and custodial symmetry, including Randall-Sundrum models with

a fundamental Higgs, models of gauge-Higgs unification and Higgsless models. As an example, we

derive the constraints that arise on a representative model of gauge-Higgs unification from a global

fit to the precision electroweak observables. A scan over the parameter space typically leads to a

lower bound on the Kaluza-Klein excitations of the gauge bosons of about 2 − 3 TeV, depending

on the configuration. In the fermionic sector one can have Kaluza-Klein excitations with masses

of a few hundred GeV. We present the constraints on these light fermions from recent Tevatron

searches, and explore interesting discovery channels at the LHC.
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I. INTRODUCTION

Models with warped extra dimensions [1] represent a very exciting alternative to more

traditional extensions of the Standard Model (SM), like supersymmetry. These models

provide not only a natural solution to the hierarchy problem, but also a very compelling

theory of flavor, when fermions are allowed to propagate in the bulk [2]. The large hierarchies

among the different fermion masses arise in a natural way, without inducing new sources of

flavor violation for the first and second generation fermions. On the the other hand, large

flavor violation effects are predicted for the third generation fermions, most notably for the

top quark [3]. It has been recently realized that an enlarged bulk gauge symmetry,

SU(2)L × SU(2)R × U(1)X , (1)

can act as a custodial symmetry that protects two of the most constraining observables from

large tree-level corrections: the Peskin-Takeuchi [4] T parameter [5] and, if an extra discrete

left-right symmetry PLR is imposed, the anomalous ZbLb̄L coupling [6].1 When the zero

modes of the first two generations are localized far from the IR brane, so as to explain the

low-energy flavor structure, an analysis of the electroweak (EW) precision data based on the

oblique corrections parametrized by S and T , together with the heavy flavor asymmetries

and branching ratios, takes into account the most important effects. Therefore, at tree level,

the custodial protection of the T parameter and the ZbLb̄L coupling leaves the S parameter

as the only relevant constraint.

However, as emphasized in [8], there are calculable one-loop corrections to the precision

electroweak observables, which can be relevant and should be taken into account. In fact, for

the choice of quantum numbers that lead to the custodial protection of the ZbLb̄L coupling,

it was shown that the contribution of these loop corrections yields tight constraints on the

parameters of these models, which in turn can have interesting implications for the spectrum

of Kaluza-Klein (KK) states and their phenomenology.

In Ref. [8] we performed an analysis of the constraints from precision electroweak ob-

servables, including one-loop effects, for a specific model based on gauge-Higgs unification,

when the light fermions are localized near the UV brane. We obtained a bound on the

mass of the first level KK excitations of the gauge bosons of about 3-4 TeV, together with

1 See [7] for a possible alternative to the custodial protection of the ZbLb̄L coupling.
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light KK quarks with masses of order of a few hundred GeV, some of them with exotic

electric charges. Since the S parameter yields one of the most relevant constraints in these

models, one would like to investigate whether scenarios with the light generation fermions

localized near the conformal point (flat wavefunctions for the zero-modes), where the cou-

plings of these fermions to the SU(2)L KK modes are suppressed, can lead to a better fit [9].

Generically, however, an analysis based on the oblique approximation is not sufficient in this

region, since the couplings of fermions to SU(2)R gauge bosons tend to induce anomalous,

nonuniversal couplings to the W and Z gauge bosons.

It is important to emphasize that, due to the custodial symmetry, the corrections to the

T parameter and the ZbLb̄L vertex cannot receive contributions from higher dimension 5D

operators suppressed by a low cutoff scale and are, therefore, calculable. In addition, in

any given model these two quantities satisfy a definite correlation which, in general, may

be understood in terms of the contribution of the lightest KK modes. The potentially large

loop corrections to the T parameter and the ZbLb̄L coupling, as well as the effects of the

associated correlations, must be considered in any model that makes use of the custodial

symmetry. This includes models of gauge-Higgs unification [10, 11, 12] and models with a

fundamental Higgs or even without a Higgs [13].

In this work, we present the results of a global fit to all relevant EW precision observables,

taking into account the correlations among them as well as possible non-universal effects,

in a particular setting. We have chosen to test these ideas in the context of gauge-Higgs

unification scenarios, which we find particularly well motivated theoretically since they ad-

dress the little hierarchy problem present in Randall-Sundrum models with a fundamental

Higgs. In addition, this framework naturally leads to light KK fermion states, often with

exotic charges, that makes these scenarios quite interesting from a phenomenological point

of view.

The outline of the paper is as follows. We introduce the model in Section II and discuss

its main effects on EW observables in Section III. The results of the global fit are reported

in Section IV and we discuss some simple variations in section V. In Section VI we present

an interesting example which allows for light KK fermions for the three generations within

the reach of present and near future colliders. We discuss the bounds from EW precision

observables in combination with those from direct searches at the Tevatron. We also discuss

interesting search channels at the LHC. Finally we conclude in section VII. Some technical
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results are given in the Appendix.

II. A MODEL OF GAUGE-HIGGS UNIFICATION

Our setup is a 5-dimensional model in a warped background,

ds2 = e−2kyηµνdx
µdxν − dy2 , (2)

where 0 ≤ y ≤ L. The bulk gauge symmetry is SO(5) × U(1)X , broken by boundary

conditions to SU(2)L × SU(2)R × U(1)X on the IR brane (y = L), and to the Standard

Model SU(2)L × U(1)Y gauge group on the UV brane (y = 0) [12]. The U(1)X charges

are adjusted so as to recover the correct hypercharges, where Y/2 = T 3
R + QX with T 3

R

the third SU(2)R generator and QX the U(1)X charge. The fifth component of the gauge

fields in SO(5)/SU(2)L×SU(2)R has a (four-dimensional scalar) zero mode with the quan-

tum numbers of the Higgs boson. This zero mode has a non-trivial profile in the extra

dimension [11],

Aâ5(x, y) = A
â(0)
5 (x)fH(y) + . . . , (3)

where â labels the generators of SO(5)/SU(2)L × SU(2)R, and is exponentially localized

towards the IR brane

fH(y) =

√
2k

e2kL − 1
e2ky , (4)

hence giving a solution to the hierarchy problem. The dots in Eq. (3) stand for massive KK

modes that are eaten by the corresponding KK gauge fields.

The SM fermions are embedded in full representations of the bulk gauge group. The

presence of the SU(2)R subgroup of the full bulk gauge symmetry ensures the custodial

protection of the T parameter [5]. In order to have a custodial protection of the ZbLb̄L

coupling, the choice T 3
R(bL) = T 3

L(bL) has to be enforced [6]. An economical choice is to let

the SM SU(2)L top-bottom doublet arise from a 52/3 of SO(5)×U(1)X , where the subscript

refers to the U(1)X charge. As discussed in [8], putting the SM SU(2)L singlet top in the

same SO(5) multiplet as the doublet, without further mixing, is disfavored since, for the

correct value of the top quark mass, this leads to a large negative contribution to the T

parameter at one loop. Hence we let the right-handed top quark arise from a second 52/3 of

SO(5) × U(1)X . The right handed bottom can come from a 102/3 that allows to write the

bottom Yukawa coupling. For simplicity, and because it allows the generation of the CKM
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mixing matrix, we make the same choice for the first two quark generations. We therefore

introduce in the quark sector three SO(5) multiplets per generation as follows:

ξi1L ∼ Qi
1L =



χ
ui

1L(−,+) qui

L (+,+)

χdi

1L(−,+) qdi

L (+,+)



 ⊕ u′iL(−,+) ,

ξi2R ∼ Qi
2R =


χ

ui

2R(+,−) q′ui

R (+,−)

χdi

2R(+,−) q′di

R (+,−)


 ⊕ uiR(+,+) ,

ξi3R ∼ T i1R =




ψ′i
R(−,+)

U ′i
R(−,+)

D′i
R(−,+)


 ⊕ T i2R =




ψ′′i
R (−,+)

U ′′i
R (−,+)

Di
R(+,+)


 ⊕ Qi

3R =


χ

ui

3R(−,+) q′′ui

R (−,+)

χdi

3R(−,+) q′′di

R (−,+)


 ,

(5)

where we show the decomposition under SU(2)L × SU(2)R. The Qi’s are bidoublets of

SU(2)L × SU(2)R, with SU(2)L acting vertically and SU(2)R acting horizontally. The T i1’s

and T i2’s transform as (3, 1) and (1, 3) under SU(2)L × SU(2)R, respectively, while ui and

u′i are SU(2)L × SU(2)R singlets. The superscripts, i = 1, 2, 3, label the three generations.

We also show the boundary conditions on the indicated 4D chirality, where − stands

for Dirichlet boundary conditions. The + stands for a linear combination of Neumann and

Dirichlet boundary conditions, that is determined via the fermion bulk equations of motion

from the Dirichlet boundary condition obeyed by the opposite chirality. In the absence of

mixing among multiplets satisfying different boundary conditions, the SM fermions arise as

the zero-modes of the fields obeying (+,+) boundary conditions. The remaining boundary

conditions are chosen so that SU(2)L×SU(2)R is preserved on the IR brane, and so that mass

mixing terms, necessary to obtain the SM fermion masses after EW symmetry breaking, can

be written on the IR brane. It is possible to flip the boundary conditions onQi
2R, consistently

with these requirements, and we will comment on such a possibility in later sections.

As for the leptons, one option is to embed the SM SU(2)L lepton doublets into the 50

representation of SO(5) × U(1)X and the SU(2)L charged lepton singlets in a 100. Right-

handed neutrinos may come from the SU(2)L×SU(2)R singlet in the 50, or from a different

50, as in the quark sector. The boundary conditions may then be chosen in analogy with

those in Eq. (5). A second possibility is that the leptons, unlike the quarks, arise from the

4-dimensional spinorial representation of SO(5), so that the SM lepton doublets transform

as (2, 1) under SU(2)L × SU(2)R, while the SM lepton singlets transform as (1, 2).
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As remarked above, the zero-mode fermions can acquire EW symmetry breaking masses

through mixing effects. The most general SU(2)L × SU(2)R × U(1)X invariant mass La-

grangian at the IR brane –compatible with the boundary conditions– is, in the quark sector,

Lm = δ(y − L)
[
ū′LMuuR + Q̄1LMdQ3R + Q̄2LMudQ3R + h.c.

]
, (6)

where Mu, Md and Mud are dimensionless 3×3 matrices, and a matrix notation is employed.

III. EFFECTS ON ELECTROWEAK OBSERVABLES

In order to study the effects that the KK excitations of bulk fermions and gauge bosons

have on EW observables, we compute the effective Lagrangian that results after integrating

them out at tree level, keeping the leading corrections with operators of dimension six. As

was mentioned in the introduction, some one-loop corrections are also important and will be

included on top of the tree-level effects. In fact, in models with custodial protection of the

ZbLb̄L coupling, some of the KK fermions become considerably lighter than the KK gauge

bosons, and can give relevant loop level effects as a result of their strong mixing with the

top quark. The loop contributions to the EW observables coming from the gauge boson

KK excitations are suppressed due to their larger masses, as well as to the fact that they

couple via the EW gauge couplings, that are smaller than the top Yukawa coupling. Thus

we expect their one-loop effects on EW observables to be subleading and we neglect them.

A. Tree-level effective Lagrangian

In this section, we compute the effective Lagrangian up to dimension six operators, ob-

tained when the heavy physics in the models discussed in the previous section is integrated

out at tree level. We will express the effective Lagrangian in the basis of [14] where the di-

mension six operators are still SU(2)L×U(1)Y invariant. The procedure is the following. We

integrate out the heavy physics in an explicitly SU(2)L×U(1)Y invariant way and then use

the SM equations of motion if necessary to write the resulting operators in the basis of [14].

Only a subset of the 81 operators in that basis is relevant for EW precision observables, as

discussed in [15]. At the order we are considering, we can integrate out independently each

type of heavy physics. The effective Lagrangian in the basis of [14] after integrating out the
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heavy gauge bosons reads

∆L6 = αhOh + αthlOt
hl + αthqOt

hq + αshlOs
hl + αshqOs

hq + αhuOhu + αhdOhd + αheOhe

+ αtllOt
ll + αtlqOt

lq + αsllOs
ll + αslqOs

lq + αleOle + αqeOqe + αluOlu + αldOld

+ αeeOee + αeuOeu + αedOed + . . . , (7)

where the dots represent other operators that are irrelevant for the analysis of EW observ-

ables. Here h stands for the SM Higgs, q and l refer to the SU(2)L doublet quark and

leptons, and u, d, e refer to the SM SU(2)L quark and lepton singlets. The list of the

dimension-six operators generated in our model is:

• Oblique operators

Oh = |h†Dµh|2 . (8)

• Two-fermion operators

Os
hl = i(h†Dµh)(l̄γ

µl) + h.c. , Ot
hl = i(h†σaDµh)(l̄γ

µσal) + h.c. ,

Os
hq = i(h†Dµh)(q̄γ

µq) + h.c. , Ot
hq = i(h†σaDµh)(q̄γ

µσaq) + h.c. ,

Ohu = i(h†Dµh)(ūγ
µu) + h.c. , Ohd = i(h†Dµh)(d̄γ

µd) + h.c. ,

Ohe = i(h†Dµh)(ēγ
µe) + h.c. .

(9)

• Four-fermion operators

Os
ll = 1

2
(l̄γµl)(l̄γµl) , Ot

ll = 1
2
(l̄γµσal)(l̄γµσ

al) ,

Os
lq = (l̄γµl)(q̄γµq) , Ot

lq = (l̄γµσal)(q̄γµσ
aq) ,

Ole = (l̄γµl)(ēγµe) , Oqe = (q̄γµq)(ēγµe) ,

Olu = (l̄γµl)(ūγµu) , Old = (l̄γµl)(d̄γµd) ,

Oee = 1
2
(ēγµe)(ēγµe) ,

Oeu = (ēγµe)(ūγµu) , Oed = (ēγµe)(d̄γµd) .

(10)

The coefficients αi encode the dependence on the different parameters of our model and

their explicit form is given in the Appendix.

The heavy fermions can be integrated out in a similar fashion [16]. However their effects

are typically negligible for all the SM fermions except for the top quark [17], whose couplings

are irrelevant for the EW precision observables (except for one-loop corrections [18] that
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will be considered in the next subsection). We have nevertheless included all these effects

numerically. 2

The operator Oh gives a direct contribution to the T parameter

T = −4πv2

e2
αh = −4πv2

c2
[δ2

++ − δ2
−+], (11)

where αh is the coefficient of the corresponding operator as given in the Appendix, e is the

positron charge, c is the cosine of the weak mixing angle, v = 174 GeV is the Higgs vev,

and δ2
++ and δ2

−+ are functions depending on the Higgs and KK gauge boson wavefunctions,

as defined in Eq. (A.18). The (partial) cancellation between δ2
++ and δ2

−+ in the tree-level

contribution to the T parameter of Eq. (11) is a consequence of the custodial symmetry.

Also note that the S parameter, generated by the operator

αWBOWB = αWB (h†σah)W a
µνB

µν , (12)

where S = (32πsc/e2)v2αWB, is not induced at tree level in our model.3

B. Large one-loop effects

Although higher dimensional models are nonrenormalizable and many observables receive

contributions from higher-dimension operators whose coefficients can only be determined by

an unspecified UV completion, it is noteworthy that some of the low-energy observables are

actually insensitive to the UV physics. This is the case of the Peskin-Takeuchi T parameter

and of the ZbLb̄L coupling in models with custodial symmetry and the quantum numbers

used in this paper. In particular, loop contributions to these parameters are dominated by

the KK scale. This follows simply from the fact that the assumed symmetries (SU(2)L ×
SU(2)R with a discrete symmetry exchanging L with R) and quantum number assignments

do not allow for local 5D counterterms that can contribute to these observables. Note,

2 There are potentially large tree-level mixing effects for the bottom quark as well [12], which do affect

the EW precision observable fit. Such effects are, however, negligible with the current choice of quantum

numbers and boundary conditions.
3 Note that this is not in contradiction with previous claims that a moderate S parameter is generated in

these models. This contribution to the S parameter comes from a field redefinition that absorbs a global

shift in the gauge couplings of the light fermions into the oblique S parameter. Here we do not do that

field redefinition as the shift in the couplings is automatically included in the global fit.
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however, that one can write operators that contribute to the ZtLt̄L coupling. Although

these symmetries are broken by the boundary conditions at the UV brane, such breaking

is non-local and effectively leads to finite contributions to the T parameter and the ZbLb̄L

coupling at loop level.4

The detailed computation of the leading one-loop contributions to the T parameter was

first performed in [8]. The important observation made in that work is that the presence of

bidoublets, necessary to protect the tree-level contribution to the ZbLb̄L coupling, typically

induces a negative T parameter at one loop. There are also contributions from the KK

excitations of the SU(2)L×SU(2)R singlets that can alter this result, provided these singlets

are relatively light and mix sufficiently strongly with the top quark. In this case, a positive

T might be obtained, but also the one-loop contributions to the ZbLb̄L coupling become

sizable and therefore relevant for the EW fit.

The main one-loop effects, due to heavy vector-like fermions that mix strongly with the

top, can be computed by generalizing the results in Refs.[19, 20]. We give the detailed

formulas in the Appendix, which can be easily evaluated numerically. The largest contribu-

tions arise from the KK excitations that couple via the top Yukawa coupling. In the case

of the T parameter, the quantitative features can be understood from the following types of

contributions:

• A negative contribution to T from the lightest bidoublet excitations that violate the

custodial symmetry via the boundary conditions, Q3
1 in the notation of Eq. (5).

• A positive contribution to T from the lightest SU(2)L×SU(2)R singlet KK excitations,

u′3 in the notation of Eq. (5).

In Ref. [8] we also gave approximate analytic formulas for the above contributions. The ex-

pressions for the bidoublet are somewhat complicated, but the negative contribution arises

from the first KK mode of the (χu3

1 , χ
d3
1 ) SU(2)L doublet, that is lighter and couples more

strongly to the Higgs than the lightest KK mode of the (qu3

1 , q
d3
1 ) SU(2)L doublet (which

gives a partially compensating positive contribution). Notice that the contribution due to

4 One can write counterterms that contribute to the T parameter on the UV brane, where the symmetry

is reduced to that of the Standard Model. However, such effects are suppressed by the Planck scale, and

also by the exponentially small Higgs wavefunction.
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the Q3
2 bidoublet is extremely small, even when these modes are very light, since the cus-

todial symmetry is preserved by their boundary conditions. They can give a nonvanishing

contribution to T only from mixing with other bidoublets that violate the custodial sym-

metry. Our choice for the boundary conditions of Q3
2 is motivated by the desire to forbid a

localized mixing mass term between Q3
1 and Q3

2, that would make the (χu3

1 , χ
d3
1 ) KK modes

very light and their contribution to the T parameter large and negative (which as we will

review below is disfavored by the EW precision data. See also Ref. [8] for further details).

In the region of parameter space favored by the EW precision data, the boundary conditions

for Q3
2 result in their KK excitations easily being in the few hundred GeV range, and present

a very interesting phenomenology (see section VI). It is in the above sense that we regard

very light bidoublets as a rather well-motivated signature of the scenarios we are studying.

The positive contribution to T from u′3, mentioned above, is simply given by

∆T = Ttop

2m2
qt
0
,t

M2
t

(
ln

M2
t

m2
top

− 1 +
m2
qt
0
,t

2m2
top

)
, (13)

where Ttop is the SM contribution from the top quark, with mass mtop, Mt is the KK mass

of u′3, and mqt
0
,t is the EW symmetry breaking mass mixing the lightest singlet with the SM

(t, b) doublet. There are also terms that arise from the mixing between the first KK modes

of the third generation Q3
1 and u′3, that can be relevant.

It is important that the dominant fermion loop contributions to the ZbLb̄L vertex arise

from the same set of states as discussed above. The contributions coming from the singlet,

u′3, are

δgsbL =
α

16πs2M2
W

m4
qt
0
,t

M2
t

[
1 + 2

m2
top

m2
qt
0
,t

(
ln

(
M2

t

m2
top

)
− 1
)]

, (14)

while those coming from Q3
1 are

δgqbL + δgχbL =
α

32πs2M2
W

m2
top

[
m2
qt,t

M2
q

ln

(
M2

q

m2
top

)
−
m2
χd,t

M2
χ

ln

(
M2

χ

m2
top

)]
. (15)

Here Mt, Mq and Mχ are the KK masses of u′3, qu3

1 and χd31 , respectively, while mqt,t and

mχd,t are the EW breaking masses that mix the right-handed top with the lightest KK modes

of the two bidoublet components qu3

1 and χd31 , respectively. Also, MW is the W mass, α is

the fine structure constant and s is the sine of the weak mixing angle. There are additional

contributions from the mixing between bidoublet and singlet KK modes, but we do not
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FIG. 1: Correlation between the one-loop contributions to the T parameter, denoted by ∆T , and

the one-loop contributions to δgbL/gbL in the model of Eq. (5). We show representative curves

for a few values of the left-handed top quark localization parameter, c1, and the bottom quark

localization parameter, c3, as the right-handed top localization parameter, c2, is varied. We take

the mass of the first KK excitation of the SU(2)L gauge bosons mgauge
1 = 3.75 TeV. The band

corresponds to the 2-σ bound on δgbL/gbL, assuming no large corrections to the ZbRb̄R coupling.

give the analytic expressions here since they are somewhat complicated. The dominant

contribution arises from the singlet, but the mixing terms can also give a relevant effect.

It should be noted that, although these contributions depend on several mass and mixing

parameters, within the context of an extra dimensional theory all of these are highly corre-

lated by the shape of the wavefunctions. As an example, we show in Fig. 1 the correlation

between the one-loop contributions to T and the ZbLb̄L vertex in the gauge-Higgs unification

scenario based on the SO(5)× U(1)X gauge symmetry, and with the fermion content given

in Eq. (5). In particular, we see that in the region where T becomes positive, the one-loop

contribution to the ZbLb̄L vertex increases, and cannot be neglected in the EW fit. In the

figure, we did not include the tree-level contributions to the T -parameter from gauge KK

mode exchange, which are subdominant.

Given the importance of these one-loop corrections, we have formally added them to the

effective Lagrangian at the same level as the tree-level corrections computed in the previous
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section.5 This is done by simply adding the corresponding results of Eqs. (A.25-A.30) to

the coefficients of the operators Oh and Ot
hQ (here Q represents the doublet of the third

generation).

We have also computed the one-loop contributions to the S-parameter. Although there

is no reason to expect the result to be UV insensitive, one finds that at one loop the sum

over KK modes converges fast. In the region of parameter space we are interested, the

corresponding contribution to S is not negligible, and we include it as a contribution to

the operator OWB defined in Eq. (12). We take this as a reasonable estimate of the total

contribution to S, but one should keep in mind that, at least in principle, additional UV

contributions to S could have a significant impact. Note that, when the light fermions are

localized far from the IR brane, the universal shift in their couplings to the gauge bosons

can be reabsorbed as an additional tree-level contribution to the S parameter. Since the

tree- and loop-level contributions to the S parameter have the same sign, it is natural to

assume that there are no particular cancellations when the effects of the physics above the

UV cut-off are included. In particular, the S parameter is positive, thus disfavoring the

regions of parameter space that lead to a negative T parameter [21].

IV. GLOBAL FIT TO ELECTROWEAK PRECISION OBSERVABLES

Having computed the leading corrections to the effective Lagrangian in the model of

interest, we can compute the χ2 function, defined by

χ2(αi) = χ2
min + (αi − α̂i)Mij(αj − α̂j) , (16)

where the αi’s, as defined by Eq. (7), depend on the fundamental parameters of the model:

localization parameters for each 5D fermion multiplet, cξi, localized fermion mass mixing

parameters, Mu, Md and Mud, as defined in Eq. (6), the gauge couplings, g5 and g5X , and

the overall scale of the new physics, which we take as k̃ = k e−kL. The matrix Mij and the

vector α̂i are obtained by performing a global fit to the experimental data. We use the fit

of Ref. [15], which takes into account low-energy measurements, as well as the results from

5 Note that the tree-level corrections arise from the gauge sector. Since the KK gauge bosons are heavier

than the KK fermions, their tree-level effects can be comparable to the fermion one-loop effects. We

expect higher-order loop corrections to be subleading, so they can be neglected.
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LEP1, SLD and LEP2. However, we have not included the NuTeV results.

Although the model contains a large number of parameters, some of these, or certain

combinations of them, are fixed by the low-energy gauge couplings, fermion masses and

fermion mixing angles. Also, in order to avoid dangerous FCNC’s we have considered family

independent localization parameters, clight
ξ1

, clight
ξ2

, clight
ξ3

, for the multiplets giving rise to the

light SM fermions. A scan over parameter space shows that the EW fit favors the light

right-handed (RH) quarks and leptons to be localized near the UV brane (clight
ξ2

∼ clight
ξ3

∼
−0.6) and the left-handed (LH) quarks and leptons to be localized close to each other.

Thus, we will take a common localization parameter for the light LH quarks and leptons,

denoted by clight, and, unless otherwise specified, we place the light RH fermions near the

UV brane (we denote their localization parameters by cRH). Although the assumption of

family independence is quite important when the fermions are localized near the IR brane,

it is not essential when the fermions are localized closer to the UV brane (the fermion mass

hierarchies can then be generated by exponential wavefunction factors). In particular, if

the light fermions are localized close to the UV brane, the results of our global fit apply

even if their localization parameters are not family universal. As for the third quark family,

we have allowed independent localization parameters for the different multiplets: c1 for the

multiplet giving rise to the SU(2)L doublet (t, b)L, c2 for the multiplet giving rise to tR, and

c3 for the multiplet giving rise to bR.

Regarding the localized mass mixing terms of Eq. (6), when the first two generations are

localized near the IR brane, the corresponding terms are extremely small (of order mf/k̃,

where mf is a fermion mass), and have a negligible effect. In this case, the only large

boundary mass is M33
u , that is fixed by the top quark mass for each value of c1 and c2.

However, when the light fermions are localized near the UV brane, the mixing mass terms

can be of order one (recall these are dimensionless parameters). In this case, they can have

an important effect on the KK spectrum. Nevertheless, they still have a negligible effect on

the EW fit, for the following reasons. As discussed before, there are potentially important

contributions from fermion KK modes both at tree- and loop-level. The tree-level effects arise

from mixing, after electroweak symmetry breaking, between the zero-mode and the massive

fermion modes, and can affect the couplings to the gauge bosons of the SM fermions. Since

the region where the localized masses are of order one corresponds to the case where the

zero-mode fermions are far from the IR brane, and since the mixing effects are proportional
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to the overlap between this wavefunction and the Higgs profile, which is localized near the

IR brane, it is easy to see that the relevant mixing angles are exponentially suppressed.

On the other hand, when the zero-mode fermions are near the IR brane, the localized

masses are forced to be small due to the smallness of the light fermion masses, so that the

mixing effects are again suppressed (for the down-type fermions, the custodial symmetry

enforces additional cancellations). We have checked that these tree-level effects are always

numerically negligible. The second class of potentially large effects arises at loop level. When

the zero-mode fermions are near the IR brane, the loop effects are directly proportional to

the fourth power of the small localized mixing parameters. When the zero-mode fermions

are localized near the UV brane, although the loop contributions involving mixing with the

zero mode are exponentially suppressed as above, there are loop contributions involving only

mixing among massive KK states, that are not necessarily negligible. However, in this limit

the massive KK spectrum is SO(5) symmetric to a very good approximation. As a result,

the loop contributions to the T parameter and the ZbLb̄L vertex discussed in the previous

section, due to the first two generations, are numerically negligible due to the custodial

symmetry. We have also verified that the S parameter has only a weak dependence on the

localized mixing masses. Thus, we conclude that for the purpose of the EW fit analysis, the

mixing masses involving the light generations can be neglected (although, of course, they

are important in reproducing the correct fermion masses and mixing angles). Therefore, we

are left with six relevant model parameters: clight, cRH, c1, c2, c3 and k̃.

It should be noted that in models of gauge-Higgs unification the Higgs potential –that is

induced at loop-level– is also calculable [10]. Therefore, given the matter and gauge content

of the model, the scale of new physics, k̃, is tied to the scale of EW symmetry breaking

by the gauge and Yukawa couplings (the latter ones, as determined by the localized mass

parameters). However, it is possible to imagine additional matter content that could affect

the Higgs potential without having an impact on the EW precision measurements (e.g.

5D fermion multiplets without zero-modes and with exotic quantum numbers that do not

allow mixing with the SM fermions). Therefore, we treat k̃ as an effectively independent

parameter. Given the correlation between k̃ and the Higgs vev in any such model, one can

use our bounds on k̃ to get an idea of whether the model is excluded or not (however, if k̃

turns out to be too small, an analysis that goes beyond the linear treatment of the Higgs

couplings used here might be necessary). On the other hand, our approach allows us to apply
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our bounds to more general models with a bulk Higgs, and where the Yukawa couplings arise

in a similar manner as in gauge-Higgs unification scenarios. We will also assume that, as

happens in gauge-Higgs unification scenarios, the Higgs is light, and we have used a Higgs

mass mH = 120 GeV.

It was shown in Ref. [8] that the T parameter in models with custodial protection of the

ZbLb̄L vertex is negative and non-negligible in a large region of parameter space. However,

it exhibits a strong dependence on the right-handed top localization parameter, c2, when the

right-handed top has a nearly flat wavefunction, corresponding to c2 ∼ −0.5. In this case, T

can easily reach positive values of order one, so that by adjusting c2 one can get essentially

any value of T . Thus, in order to reduce the dimension of our parameter space we have

chosen to minimize the χ2 with respect to c2 for each value of the rest of the parameters.

Note that this also takes into account the loop corrections to the ZbLb̄L vertex, since these

are correlated with the T parameter as exemplified in Fig. 1. By taking the RH fermions

near the UV brane we are also minimizing with respect to cRH. We have therefore performed

a four-parameter fit and obtained the 2σ bound on k̃ by varying the χ2 with respect to the

other three parameters, clight, c1 and c3. The first of these parameters, that determines the

localization of the light fermions, affects directly the tree-level effective Lagrangian computed

in Section IIIA, whereas the latter two, that involve localization of the third quark family,

mostly enter the fit through the one-loop effects discussed in Section IIIB.

As we mentioned in section II, the SM left-handed leptons can be embedded either in

the vector or spinor representations of SO(5). For the first choice, the left-handed SM

leptons transform like (2, 2) under the SU(2)L × SU(2)R subgroup, thus allowing for the

implementation of the protection of some of the lepton couplings to the Z gauge boson, as

done in the quark sector. Such a protection, however, is not as essential as in the quark

sector, since there are no very massive leptons. This allows for the second possibility where

the SM leptons transform like (2, 1) or (1, 2) under SU(2)L×SU(2)R. As we show below, the

bounds are somewhat relaxed for the second choice. Thus, we concentrate on this possibility,

and mention the results of the fit when bidoublets are used for the leptons when appropriate.

A scan over parameter space gives a 2σ lower bound

k̃ & 1 TeV (95% C.L.) , (17)

which in turns implies a mass for the first gauge KK excitations mgauge
1 & 2.5 TeV. This
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FIG. 2: Lower bound on k̃ = k e−kL as a function of c3 and clight for fixed c1 = 0.2 and

cRH = −0.6 (left panel). The different contours, from dark to light, correspond to k̃ =

1030, 1100, 1300, 1500, 1700 and 2000 GeV, respectively. The minimum is k̃min = 1 TeV, corre-

sponding to c3 ≈ −0.55 and clight ≈ 0.48. In the right panel we show the lower bound on k̃ as a

function of clight for fixed cRH = c3 = −0.6 and three values of c1. We also show the lower bound

on k̃ for c1 = 0.2 and c3 = −0.6, assuming cRH = −clight. The mass of the first gauge KK modes

is mgauge
1 ≈ 2.5 k̃.

bound is saturated for c1 ≈ 0.2 − 0.3, clight ≈ 0.48 and c3 ≈ −0.55 (with the RH light

fermions localized near the UV brane and a nearly flat tR wavefunction with c2 ≈ −0.47).

On the other hand, when all the light fermions are localized near the UV brane a bound of

k̃ & 1.4 TeV is obtained, consistent with the result we found in Ref. [8] where a partial fit

based on oblique parameters and the b asymmetries and branching fractions was used. This

confirms the expectation that the partial fit captures the main effects of the new physics on

the EW precision observables in the case that the light fermions are localized near the UV

brane.

The results are actually quite insensitive to the value of c1, with slightly better results

as we get Q1 farther from the IR brane, i.e. larger c1. If Q1 is too far from the IR brane,

however, it is not possible to generate the top quark mass, with a resulting upper bound

c1 . 0.3. In Fig. 2 we show, in the left panel, the 2σ lower bound on k̃ as a function of

c3 and clight, for fixed c1 = 0.2, whereas in the right panel we show the bound on k̃ as a
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function of clight for fixed c3 = −0.6 and three different values of c1 = −0.2, 0, 0.2, displaying

the mild dependence on this latter parameter. We also show in the same figure the effect of

localizing the light RH quarks and leptons at the same point as the LH ones. The minimum

of the fit then shifts to −cRH = clight ≈ 0.51 with a lower bound k̃ & 1.2 TeV.

The dependence on the localization of the light fermions is easy to understand. The fit

is virtually independent of the particular localization once the conformal point is crossed

towards the UV brane, clight & 0.5, due to the universal couplings of fermion zero modes to

gauge boson KK modes in that case. There is of course a limit on how far from the IR brane

we can get, given by the fact that we have to generate the fermion masses. For instance,

the charm and strange masses force us to take the associated localization parameters below

about 0.6. This is why we have taken clight ≤ 0.6 in our plots. As we have emphasized,

however, the results in that limit are independent of the particular localization of each light

fermion, and we could take the first generation fermions to be farther away from the IR

brane with similar results.

Also, as is clear from Fig. 2, bringing the light fermions very close to the IR brane

does not improve the fit, due to the strong coupling to the gauge boson KK modes in that

limit. However, the figure also shows a minimum when the light fermions are near the

conformal point. It is well known that in this case the (light) fermions decouple from the

KK excitations of the W and Z gauge bosons. It is nevertheless important to notice that

they do not decouple from the KK excitations of the SU(2)R gauge bosons and, even near

the conformal point, this leads to non-universal shifts in the gauge couplings of the SM

fermions that cannot be neglected in the fit. To illustrate the relevance of such effects, if

the custodial protection, SU(2)V ×PLR, is also implemented in the lepton sector, such non-

universal shifts are enough to completely erase the dip in the χ2 near the conformal point. In

that case, one finds a 2σ lower bound of k̃ & 1.4 TeV, obtained when the light fermions are

near the UV brane (this is exactly as in Fig. 2, since in this region the SU(2)R gauge bosons

quickly decouple from the low-energy physics), and the bound increases monotonically as

the light fermions are brought closer to the IR brane. Such a feature is a direct result of the

fermion couplings to the SU(2)R gauge bosons as specified by the embedding into bidoublets

of SU(2)L × SU(2)R. We explore other possibilities in section V.

Finally, the dependence on the last localization parameter, c3, can also be easily under-

stood. In the limit that the light fermions are near the IR brane (clight ≤ 0.5), the loss of
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up-down universality as well as the strong coupling of light fermions to the gauge boson KK

excitations dominate the fit, and therefore the details of the bR localization are irrelevant.

This is the reason for the horizontal contours in the left panel of Fig. 2 for clight . 0.5. As

the light fermions get farther from the IR brane, the b asymmetries and branching fractions

gain importance in the fit and therefore there is some dependence on the value of c3. The

fit shows that the EW precision observables select the region in which bR and the RH light

fermions are localized close to the UV brane, whereas the LH light fermions are near the

conformal point slightly towards the IR brane. In such a scheme the fermion mass hierar-

chies can be obtained from the RH fermion profiles. Note, however, that the light families,

both LH and RH, could be localized close to the UV brane with only a slightly tighter bound

on k̃.

V. EFFECTS OF SIMPLE MODIFICATIONS

The result of the global fit gives an excellent idea of the typical bounds on the scale of

new physics in this class of models. Nevertheless, they are indirect bounds and they should

be interpreted accordingly.

In particular, contrary to the T parameter and the ZbLb̄L coupling, that receive calculable

corrections, the S parameter can get arbitrary corrections from physics at the ultraviolet

cut-off. This cut-off is warped down to the few TeV scale and therefore sizable contributions

to the S parameter cannot be ruled out. To estimate the effect such contribution might have,

we have repeated the global fit with a contribution to the S parameter that is twice as large

as the one we have computed at one loop in our model. We have also re-done the fit with an

arbitrary contribution to the S parameter, that we have optimized for each value of the input

parameters. The results of such fits are shown in Fig. 3 with solid line in the case of no extra

contribution to the S parameter beyond the one we have computed, dashed line for an extra

contribution double the one we have computed in our model, and dotted line in the case that

the extra contribution to the S parameter has been optimized to minimize the χ2. The figure

shows that a moderate extra positive contribution to the S parameter worsens the fit slightly

whereas optimizing the contribution leads to a considerably better fit, with a lower bound
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FIG. 3: Lower bound on k̃ = k e−kL as a function of clight allowing different contributions to the

S parameter in the model of Section IV. The three lines correspond to the one-loop contribution

from the spectrum in the model, Eq. (A.26) (solid line), twice that amount (dashed line) and a

value of ∆Sf that minimizes the χ2 for each value of the parameters (dotted line). In all cases,

c1 = 0.2 and cRH = c3 = −0.6.

k̃ & 650 GeV (optimal S).6 Of course, this latter possibility is the result of a model tuned

to optimize the fit, most likely requiring a fine-tuned UV completion, and therefore should

not be taken as generic. Also, for such low values of k̃ the approximations we have made in

linearizing the couplings to the Higgs in the present gauge-Higgs unification scenarios may

have to be revisited. Nevertheless, this exercise gives us an idea of how changes in the model

(or like in this case, effects of the UV completion of our model) can affect these bounds. In

particular, a negative contribution to the S parameter can be interesting [24].

A second type of modification is obtained when the quarks of the first two families –as

in the lepton sector– arise from doublets of SU(2)L or SU(2)R, as opposed to bidoublets

of SU(2)L × SU(2)R. In this case, it might be difficult to generate the mixing between the

first two quark generations and the third one. Nevertheless, we have repeated the global

6 In this case, it is the observables that depend on the b quark couplings, both at the Z peak and for LEP2,

that give all the constraints.
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FIG. 4: Lower bound on k̃ = k e−kL as a function of clight = −cRH when the light generations

arise from doublets of SU(2)L or SU(2)R, including all effects (solid line), setting the one-loop

contributions to ∆Sf to zero (dashed line), and choosing values of ∆Sf that minimize the χ2 for

each value of the parameters (dash-dotted line). We also show the lower bound on k̃ when the

right-handed light fermions are localized at cRH = −0.6 (near the UV brane), as a function of the

localization parameter for left-handed light fermions, clight (dotted line). In all cases we have fixed

c1 = 0.2 and c3 = −0.6.

fit analysis in such a scenario, as shown in Fig. 4. When the LH and RH fermions have a

common localization parameter, clight = −cRH, the fit exhibits a minimum corresponding to

a 2σ bound of k̃ ≈ 1 TeV, again around clight ≈ 0.5. This corresponds to the conformal

point, where the light generations decouple from the KK modes of the SU(2)L gauge bosons

(solid line). Note, however, that this fit includes the fermion one-loop contributions to the S

parameter, ∆Sf , that are sizable. If we do not include such loop contributions, the fit prefers

that the light generations be localized somewhat closer to the UV brane (dashed line). This

is contrary to the naive expectations, since when the presence of the SU(2)R gauge bosons

is taken into account, the tree-level corrections to the couplings between the left-handed

SM fermions and the gauge bosons vanish at a point slightly closer to the IR brane. The

result we find can be explained by observing that, under the assumption cRH = −clight, we
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cannot simultaneously avoid the corrections to the couplings involving left- and right-handed

fermions, and the global fit still prefers a region of parameter space where the couplings to

the SU(2)R gauge bosons are somewhat suppressed (fermions closer to the UV brane). In

fact, when the light RH quarks and leptons are localized near the UV brane, the fit shows

a clear and pronounced minimum at clight ≈ 0.47. In that case, one finds a lower bound

on k̃ & 600 GeV, due to an improvement in AbFB resulting from a decrease in Ae. Finally,

we have re-done the fit, again for cRH = −clight, with an arbitrary contribution to the S

parameter, optimized to minimize the χ2 (dash-dotted line). As previously discussed, such

a scenario could arise from a (possibly fine-tuned) UV completion.

We therefore conclude that both the calculable loop corrections, as well as various sources

of nonuniversal shifts to the couplings between fermions and gauge bosons can place impor-

tant restrictions, and that a global fit analysis is essential in a broad class of warped scenarios,

whenever the light generations are not close to the UV brane. We find that the indirect

bounds on k̃ are typically around a TeV.

VI. SPECTRUM AND PHENOMENOLOGICAL IMPLICATIONS

We have seen that a global fit to EW precision observables allows KK excitations of the

SM gauge bosons, together with W±
R and Z ′, as light asmgauge

1 ∼ 2−3 TeV over a wide region

of parameter space in models with custodial protection of the T parameter and the ZbLb̄L

coupling. This opens up exciting possibilities for discovering these particles at the LHC and

measuring their properties [22]. In particular, the loop contribution to the T parameter

typically singles out a very specific localization of the third quark family (tR almost flat

and (tL, bL) near the IR brane), that leads to a distinct phenomenology. 7 The fermionic

spectrum is even more exciting as it can be much lighter than the the spectrum of gauge

boson KK modes. There are two reasons why KK fermions can be light in these models.

One is the presence of large brane localized masses, and the other is the natural appearance

of twisted boundary conditions, (−,+) or (+,−). Large brane localized masses, needed to

generate the large top mass, are a generic feature of these models. In principle, one could get

the top mass through brane localized masses that connect either bidoublets or singlets [see

7 This interesting possibility, mentioned for the first time in [8], with the (tL, bL) quarks coupling more

strongly to the IR brane than tR, was briefly discussed in [22].
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q′ Q mq′ (GeV) decay

q1
1

2
3 ∼ 200 − 500 q1

1 → Zu, (100%)

q2
1

2
3 ∼ 200 − 500 q2

1 → Zc, (100%)

q1
2

2
3 ∼ 200 − 500 q1

2 → Hu, (100%)

q2
2

2
3 ∼ 200 − 500 q2

2 → Hc, (100%)

χu1

2
5
3 ∼ 200 − 500 χu1

2 → Wu, (100%)

χu2

2
5
3 ∼ 200 − 500 χu2

2 → Wc, (100%)

q′d1 −1
3 ∼ 200 − 500 q′d1 → Wu, (100%)

q′d2 −1
3 ∼ 200 − 500 q′d2 → Wc, (100%)

TABLE I: Electric charges, typical masses and decay channels for the KK excitations of the first

two quark families with masses below 1 TeV. Here, qi1 and qi2 are linear combinations of the gauge

eigenstates q′ui and χdi

2 of Eq. (5).

Eq. (6)]. However, in the case of localized masses connecting two bidoublets, the light KK

bidoublet excitations will mix strongly with the top quark, inducing a negative T parameter

which is disfavored by the EW precision data. Thus, the top mass should be predominantly

obtained by means of brane localized masses connecting singlets, and therefore light KK

singlets are a generic prediction in these theories. On the other hand, light KK fermion

bidoublets can arise from twisted boundary conditions, provided they do not mix strongly

with the zero modes. In particular, our boundary conditions for Q2, which ensure no mixing

between the bidoublets Q1 and Q2, give quarks much lighter than k̃ provided that the tR

wavefunction is nearly flat (i.e. c2 ∼ −0.5), as required by the EW precision data.

The typical fermionic spectrum in our model is shown in Tables I and II. For each of the

first two families, the four quarks in Q2 of Eq. (5) have very light KK excitations for cRH .

−0.5 [18, 23]. As shown in Table I, there are eight quarks with almost degenerate masses

of a few hundred GeV. Four of them have charge 2/3, and two decay almost exclusively to

Z+j (where j denotes a jet from an up or charm quark) while the other two decay to H+j.

There are also two light quarks with charge −1/3 and two with exotic charge 5/3, which

decay to W + j.

For the third family, we have three essentially degenerate KK excitations with charges

5/3, 2/3 and −1/3. There is a fourth KK excitation with charge +2/3 and a mass very
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FIG. 5: Mass of the first level quarks of the third generation for the model of Section IV and a k̃

that saturates the bound, assuming cRH = −clight (dotted curve in the right panel of Fig. 2). In the

left panel we show the masses of the three degenerate quarks with charges 5/3, 2/3 and −1/3 as a

function of c3 and clight, for fixed c1 = 0.2. The different contours, from dark to light, correspond

to m1 = 500, 600, 750, 1000, 1250 and 1500 GeV, respectively. In the right panel we show the mass

of the three lightest quark KK modes with charge 2/3 as a function of clight for fixed c1 = 0.2 and

c3 = −0.6.

close to the previous states. In Fig. 5 (left), we show the variation of the masses of the three

lightest, degenerate KK quark excitations –that couple strongly to the third generation– as

functions of the basic parameters of the model, for fixed c1 = 0.2 and k̃ saturating the lower

bound from the global fit that assumes a common localization parameter for all the light

fermions (both LH and RH chiralities). Fig. 5 (right) shows the masses of the three lightest

KK modes with charge 2/3 as a function of clight for fixed values of c1 = 0.2 and c3 = −0.6.

As seen in the figures, quarks as light as about 400 GeV are allowed in the region in which

the light fermions are near the conformal point and bR is near the UV brane.

As an example, we show in Table II the typical values for the light KK excitations for the

third family when clight = −cRH = 0.52, c1 = 0.2, c2 = −0.49, c3 = −0.6, k̃ = 1.2 TeV, and

localized mass parameters such that the SM quark masses and CKM matrix are correctly

reproduced. There are three quarks with charge 2/3, two of them with almost degenerate

masses of about 370 GeV and the third one with mass of about 500 GeV. All of them have

decays to Z + t, H + t and W + b as shown in the table. There are also two other light KK
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q′ Q mq′ (GeV) decay

q1
2
3 369

q1 → Zt, (20%)

q1 → Ht, (60%)

q1 → Wb, (20%)

q2
2
3 373

q2 → Zt, (9%)

q2 → Ht, (70%)

q2 → Wb, (21%)

u2
2
3 504

u2 → Zt, (13%)

u2 → Ht, (40%)

u2 → Wb, (41%)

u2 → Zq1, (1.5%)

u2 → Wq′d3 , (2.5%)

u2 → Wχu3

2 , (2.%)

χu3

2
5
3 369 χu3

2 → Wt, (100%)

q′d3 −1
3 369 q′d32 → Wt, (100%)

TABLE II: Electric charges and typical masses and decay channels for the KK excitations of the

third quark family with masses below 1 TeV. We have fixed clight = −cRH = 0.52, c1 = 0.2,

c2 = −0.49, c3 = −0.6 and k̃ = 1.2 TeV. Here, q1, q2 and u2 are mainly admixtures of the gauge

eigenstates q′u3, χd32 and u′3 of Eq. (5).

modes, one with charge −1/3 and another with exotic charge 5/3, with degenerate masses

of order 370 GeV and which decay almost exclusively to W + t. Note that there is a small

but non-negligible probability for the heavier of the three quarks with charge 2/3 to decay

into the quarks of mass ∼ 370 GeV (with either charge).

The rest of the fermion KK modes have masses typically above 1 TeV. In the following

we shall discuss the potential for searches for the first level of fermionic excitations at the

Tevatron and the LHC. These models can also have very interesting collider implications in

B and top physics [25, 26] but we postpone their study for future work.

24



A. Fermion KK modes at the Tevatron

The Tevatron has excellent capabilities to search for the light KK excitations of the first

two generation quarks shown in Table I. In particular, there are ongoing Tevatron searches

for heavy quarks decaying to W + j [27] and Z + j [28], which apply directly to our model.

The first analysis examines the W + j mass spectrum and compares to the distribution

expected from a generic forth-generation top quark. The Z + j analysis does not assume

any specific model, but rather looks at the tail of the jet energy distribution for an excess

above the SM expectation. A similar analysis looks at the pT distribution of the Z boson,

and in principle could also be sensitive to signals from our model. Using the results of these

analyses and taking into account the enhancement factor in the production cross section due

to the multiplicity of quarks (4 in the W + j analysis and 2 in the Z + j one), we obtain the

following lower bound on the mass of the light KK excitations

mq ≥





325 (410) GeV, W + j with 0.76 (projected 8) fb−1 ,

300 GeV, Z + j .
(18)

Figure 6 shows the bound on k̃ from the fit to EW precision data together with the con-

straints on our parameter space that result from these direct searches at the Tevatron. The

direct search analysis eliminates the region of parameter space in which the light fermions

are localized towards the UV brane.8 When combined with the EW precision analysis, they

slightly strengthen the lower bound on k̃.

Final states with Z bosons could also lead to a signature with missing energy and jets.

Searches for squarks and gluinos might be sensitive to a signal of this type. It is difficult to

relate the experimental results to our model without performing detailed simulations. How-

ever, this channel might become interesting with a sufficiently large integrated luminosity.

We have considered other searches at the Tevatron, such as the tri-lepton, same-sign

di-lepton, and four-lepton searches. However, these are usually rather model-dependent and

apply cuts which tend to eliminate our signal. In particular, leptons reconstructing the Z

mass peak as well as jets are typically disallowed.

A very interesting feature is the presence of two light quarks that decay exclusively into

8 But notice that these direct bounds can be evaded by switching the boundary conditions for Q2 in Eq. (5)

for the first two generations.
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FIG. 6: Lower bound on k̃ = k e−kL as a function of clight = −cRH for fixed c1 = 0.2 and c3 = −0.6.

The different lines correspond to the bounds from EW precision observables (solid), the W+ jets

analysis at Tevatron with 0.76 fb−1 (dashed), the projected exclusion reach to 8 fb−1 in that same

channel (dotted-dashed) and Z+ jets analysis at Tevatron (dotted). The regions below the curves

are excluded.

H + j. If these quarks have masses around 300 GeV, their production cross section will be

of the same order of magnitude as Higgs production through gluon fusion for a light Higgs.

As there are two such quarks, and two Higgs bosons in every event, there will be a sizable

enhancement to the inclusive Higgs signal. It should be noted, however, that some sources

of background (such as WW+ jets or ZZ+ jets) are also enhanced due to the decays of

other light KK excitations, and a careful analysis of signal and background is necessary to

assess Tevatron prospects for Higgs discovery in this model.

Finally, the KK excitations of the third quark generation, as shown in Table II, are on

the verge of the projected sensitivity for the Tevatron.
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B. Fermion KK modes at the LHC

The prospects for discovery of the light KK quark excitations of the first two families are

more promising at the LHC. In principle, similar techniques as those used at the Tevatron

could lead directly to a discovery, although the increase in production comes at the cost of

a larger background from di-boson and top-quark production.

Quarks decaying to H + j enhances Higgs production at the LHC with respect to the

Standard Model. This cross-section is of the same order as Higgs gluon fusion production,

provided the quarks are not much heavier than about 400 GeV. If the Higgs is heavy enough

to decay to ZZ we have the following enhanced contribution to the inclusive H → ZZ cross

section,

σ(H → ZZ)incl ≈ 2σ(q′q̄′)B[2 − B] + σ(gg → H)B , (19)

where we have included the multiplicity of the KK fermions, and where B ≡ BR(H → ZZ) ∼
0.02 − 0.25 for mH ∼ 120 − 200 GeV [29]. For these values of B, there can easily be an

enhancement in the inclusive H → ZZ of order a few. Note that there is also a contribution

to the background from quarks decaying to Z + j although the mass reconstruction in this

channel seems precise enough to efficiently cut that background. Another clean channel

would be H → γγ for which we can take advantage of the enhancement of Higgs production

without suffering a larger background from the decays of the lighter KK modes. Note that

the loop-induced couplings, such as gg → H and H → γγ, are not significantly modified by

the extra quark states. The reason is that these heavy quark states receive only a very small

contribution to their masses from EW symmetry breaking, and as a result their effective

(diagonal) Yukawa couplings are very suppressed.

There is an important distinction to be made between the first two generations and the

third one. While the Tevatron is able to probe masses on the order of 300 GeV or higher,

these constraints can be evaded for the first two generations. If we switch the boundary

conditions of the multiplet Q2 for the first two families, the excitations of the first two quark

generations become heavier, without affecting the EW fit. In that case the zero modes for

the first two generations can be localized near the UV brane and the nice features of the mass

generation through wavefunction suppressions preserved, as well as the flavor universality of

the corrections (which become independent of the particular localization parameter in this

limit). Nonetheless, the KK quark excitations of the third quark generation remain light,
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and well within the reach of the LHC [30, 31] (and possibly of the Tevatron).

Also for the third generation, the degenerate doublets with different hypercharges and

large mixings with singlets give additional Higgs production channels which will greatly en-

hance the signals in inclusive Higgs searches and searches in the ttH channel. The Higgs

discovery reach will be even better than the one found in previous studies [32], which con-

sidered singlets, due to the enhanced decay ratio to Higgs (∼ 40− 70% vs 25% for singlets).

One will notice that nearly all of the final states listed in Table II result in top quarks in

the final state. This suggests that inclusive top searches would be useful for finding these

particles at the LHC. Another interesting signature might be multiple jets, some of them

with b-quarks, and possibly high-pT leptons or missing energy.

Finally, the exotic quantum numbers of the fermion KK excitations of the third generation

can give rise to spectacular new signatures. For instance, the quarks with electric charges

5/3 and −1/3 have similar decay channels with four W ’s

q′q̄′ →W+W−tt̄→W+W+W−W−bb̄ . (20)

This can lead to a very clean final state e+e+µ−µ− + bb̄+ 6ET with very little background.

Furthermore, for the charge 5/3, we have two W ’s of the same charge belonging to the

same decay chain, which could be identified by a pair of same-sign leptons. Also, as seen in

Table II, u2 has a non-negligible branching fraction into the lighter charge 2/3 states, which

can lead to a spectacular signal with a 6Wbb̄ final state.

VII. CONCLUSIONS

Models with warped extra dimensions explain in a compelling way the hierarchy between

the Planck and EW scales. Bulk fermions provide also a rationale for the observed hierarchy

of fermion masses and the absence, for the light fermions, of large flavor changing neutral

currents or large new effects from physics above the ultraviolet cut-off of the theory. The SM

gauge bosons and third generation quarks, however, have a sizable coupling to heavy states

through the Higgs field. These couplings induce large corrections to the T parameter and the

coupling of the left-handed bottom quark to the Z gauge boson unless some symmetry forbids

them. An enlarged bulk gauge symmetry can act as a custodial symmetry, SU(2)V × PLR,

that protects both the T parameter and the ZbLb̄L coupling. When such a symmetry is
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broken only on the UV brane, these two observables acquire a distinctive status: they are

insensitive to UV physics except for effects that are suppressed by a scale of order MPl.

This means that, for all practical purposes, they are calculable. We find that typically

the one-loop corrections to these observables are sufficiently important that they need to be

included when analyzing the bounds on these models. Furthermore, for the fermion quantum

numbers required to obtain the SM fermions while preserving the custodial symmetry, these

loop corrections are correlated. Thus, they are a generic feature of models with warped

extra dimensions and custodial symmetry SU(2)V × PLR, no matter whether the Higgs

is a fundamental scalar, the extra dimensional component of a gauge field (gauge-Higgs

unification) or not present (Higgsless models). The precise values of the T parameter and

the ZbLb̄L coupling are model-dependent, but we have identified the contributions that are

generically present under the assumption of a custodial symmetry.

We have illustrated these features in a particular model of gauge-Higgs unification. We

have computed all the relevant tree-level effects on EW precision observables plus the leading

one-loop corrections to the T parameter and the ZbLb̄L coupling. By performing a global

fit to all relevant EW precision observables we have obtained a lower bound on the masses

of the gauge boson KK excitations of about 2.5 TeV. This bound is saturated when the

left-handed light fermions have nearly flat wavefunctions (the conformal point), while the

right-handed light fermions are localized near the UV brane. However, very similar bounds

are found in a large region of parameter space in which all the light fermions are localized far

from the IR brane. In the latter case, the fit is dominated by a universal shift of the fermion

coupling to the SM gauge bosons that can be redefined into a pure oblique correction to the

S parameter, although the correlation between the T parameter and the ZbLb̄L coupling also

have a noticeable effect. Contrary to these two latter observables, the S parameter is not

protected by any symmetry and can receive corrections from physics above the UV cut-off.

Assuming an optimal correction to the S parameter from UV physics, such that the χ2 of

the fit is minimized with respect to S for each point in parameter space, we have obtained a

lower bound on the mass of the gauge boson KK modes of ∼ 1.6 TeV, which is completely

dominated by the observables in the b sector and is therefore difficult to evade (as those

observables are dominated by the ZbLb̄L coupling that is calculable in these models).

Regarding the fermionic spectrum, there can be a wealth of new vector-like quarks with

exotic quantum numbers and masses as low as a few hundred GeV. These modes can be
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light enough for the Tevatron to have started probing part of the parameter space. We

have discussed the bounds that current Tevatron analyses place on our model. Interestingly

enough, some of these modes have exotic decay channels, for instance some of them decaying

essentially 100% into H plus jets. This opens up interesting prospects for Higgs physics both

at the Tevatron and the LHC. Heavy quarks decaying to W + j or Z+ j have been searched

for at the Tevatron, with current limits of about 325 GeV and 300 GeV, respectively, for the

quark multiplicities present in our model. Excitations of the third generation quarks can

have masses of order 400 GeV that might be within reach of the Tevatron. They typically

decay to third generation quarks with non-standard branching ratios, naturally enhancing

Higgs production. Decays to top quarks through gauge bosons induce a very interesting

decay chain with four gauge bosons (4W or 2W + 2Z) and two b’s, as well as a possible

final state with six W ’s and two b’s, that would give a spectacular signal at the LHC. In

particular, heavy quarks (with typical masses of order 500 GeV) with electric charge 5/3

produce two same sign W in each decay chain whereas those with charge −1/3 will give one

W of each sign per chain. The process

pp→ q5/3,−1/3q̄5/3,−1/3 →W+tW−t̄→W+W+bW−W−b̄→ µ+µ+e−e−bb̄ 6ET , (21)

would lead to an easy discovery of these modes with almost no background.

Note added: During the final stages of this article, we received references [33] and [34],

which partially overlap with ours in the study of different aspects of models with warped

extra dimensions and custodial protection of the ZbLb̄L coupling. However they do not

discuss the importance of the calculable one-loop corrections to the T parameter or the

ZbLb̄L coupling, nor perform a detailed global fit to the EW precision observables.
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APPENDIX: 4D EFFECTIVE THEORY

In this appendix we give the details of the matching between the 5D theory and the 4D

theory used to perform the global fit analysis. We compute the dimension-6 operators and

put them in the form of Eq. (7).

1. Integration of heavy gauge bosons

We can perform the tree-level integration of heavy gauge bosons in an SU(2)L × U(1)Y

gauge invariant way by splitting the full covariant derivative into a Standard Model part and

a part involving heavy physics,

Dfull
µ = Dµ − i

[
g5LW̃

a
LµT

a
L + g5RW̃

b
RµT

b
R + g′5Y B̃µ + g5Z′QZ′Z̃ ′

µ

]
, (A.1)

where Dµ represents the SM covariant derivative and we use tildes to denote the massive

KK components of the 5D fields. In the above, a = 1, 2, 3 label the SU(2)L gauge bosons,

b = 1, 2 label the charged SU(2)R gauge bosons, and Bµ and Z ′
µ are the following two

combinations of neutral gauge bosons

Bµ =
g5XW

3
Rµ + g5RXµ√
g2
5R + g2

5X

, Z ′
µ =

g5RW
3
Rµ − g5XXµ√
g2
5R + g2

5X

, (A.2)

with g5R, g5X the five-dimensional coupling constants of the SU(2)R and U(1)X groups,9

respectively, while the hypercharge and Z ′ gauge couplings are

g′5 =
g5R g5X√
g2
5R + g2

5X

, g5Z′ =
√
g2
5R + g2

5X . (A.3)

The charges are
Y

2
= T 3

R +QX , QZ′ =
g2
5RT

3
R − g2

5XQX

g2
5R + g2

5X

, (A.4)

so that the electric charge is

Q = T 3
L + T 3

R +QX . (A.5)

9 In models that incorporate the PLR symmetry, including the gauge-Higgs unification model based on

SO(5) × U(1)X studied in the main text, one has g5 R = g5 L.
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The Lagrangian involving heavy fields then reads (terms with two heavy fields except for

kinetic terms give higher order corrections and are therefore not written)

∆L =
1

2
W̃ a
LµOµνW̃ a

Lν +
1

2
W̃ b
RµOµνW̃ b

Rν +
1

2
B̃µOµνB̃ν +

1

2
Z̃ ′
µOµνZ̃ ′

ν

+ g5LJ̃
aµ
L W̃ a

Lµ + g5RJ̃
bµ
R W̃

b
Rµ + g′5J̃

µ
Y B̃µ + g5Z′J̃µZ′Z̃

′
µ , (A.6)

where

Oµν ≡
[
ηµν∂2 − ∂µ∂ν + ηµν∂y

(
e−2ky∂y

)]
, (A.7)

and the effective currents read

J̃aµL = e−2σ[(T aLh)
†iDµh + h.c.] + e−3σψ̄γµT aLψ , (A.8)

J̃ bµR = e−2σ[(T bRh)
†iDµh+ h.c.] + e−3σψ̄γµT bRψ , (A.9)

J̃µY = e−2σ[(Y h)†iDµh + h.c.] + e−3σψ̄γµY ψ , (A.10)

J̃µZ′ = e−2σ[(QZ′h)†iDµh + h.c.] + e−3σψ̄γµQZ′ψ . (A.11)

The equations of motion for the heavy fields can now be easily written and solved. For

instance, for W̃ a
L, the equations of motion are

OµνW̃ a
Lν = −g5LJ̃

aµ
L , (A.12)

with solution

W̃ a
Lµ(p; y) = g5L

∫ L

0

dy′ G̃(++)
µν (p; y, y′)J̃aνL (p; y′) , (A.13)

where G̃
(++)
µν is the propagator for the KK modes obeying (+,+) boundary conditions (the

inverse of the differential operator in Eq. (A.12) with the zero-mode subtracted), and p is

the 4-dimensional momentum. Inserting the solution for all the heavy modes back into the

Lagrangian we obtain the following dimension six effective Lagrangian

∆L6 =
1

2

∫ L

0

dydy′
[
g2
5 L
J̃aµL G̃(++)

µν J̃aνL + g′ 25 J̃
µ
Y G̃

(++)
µν J̃νY

+ g2
5 R
J̃ bµR G̃

(−+)
µν J̃ bνR + g2

5Z′J̃
µ
Z′G̃

(−+)
µν J̃νZ′

]
. (A.14)

Note that these are already operators of dimension six. Thus, the propagators have to be

evaluated at zero momentum. The relevant expression is

G̃µν(p = 0, y, y′) = ηµνG̃p=0(y, y
′) + O(p2), (A.15)
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where for (+,+) boundary conditions,

G̃
(++)
p=0 (y, y′) =

1

4k(kL)

{
1 − e2kL

kL
+ e2ky<(1 − 2ky<) + e2ky> [1 + 2k(L− y>)]

}
,(A.16)

while for (−,+) boundary conditions

G̃
(−+)
p=0 (y, y′) = − 1

2k

[
e2ky< − 1

]
. (A.17)

Here y< (y>) denote the smallest (largest) of y and y′, the fifth-dimensional coordinate.

The full y dependence of the effective Lagrangian can be encoded in the following coeffi-

cients,

δ2
++ =

L

2

∫ L

0

dydy′ e−2kyf 2
H(y)G̃

(++)
0 (y, y′)e−2ky′f 2

H(y′), (A.18)

G++
ψ =

1

2

∫ L

0

dydy′ |fψ(y)|2G̃(++)
0 (y, y′)e−2ky′f 2

H(y′), (A.19)

G++

ψψ̃
=

1

L

∫ L

0

dydy′ |fψ(y)|2G̃(++)
0 (y, y′)|fψ̃(y′)|2, (A.20)

with similar definitions for δ2
−+, G−+

ψ and G−+

ψψ̃
in terms of the propagator of Eq. (A.17). We

have used the y-dependence of the fermion and Higgs zero modes

ψ(x, y) =
e3σ/2√
L
fψ(y)ψ(x) + . . . , (A.21)

h(x, y) = fH(y)h(x) + . . . , (A.22)

with the Higgs field, h(x), written here as a doublet of SU(2)L. Technically, the fermionic

dependence is more complicated due to the non-trivial mass mixing on the brane. The

analysis of Ref. [15], however, assumes flavor universality for the first two families and that

will actually be a very good approximation for the range of parameters we will consider

in the global fit (otherwise large flavor violation involving the first two families would be

generated, in gross conflict with experimental data).

Note that, even after evaluation of the propagators at zero momentum and integration

over the extra dimension, the effective Lagrangian in Eq.(A.14) is not yet in the basis

of [14]. Simple manipulations of the operators involving integration by parts and use of

the completeness of the Pauli matrices takes us to the desired basis. The resulting effective

Lagrangian then reads,

∆L6 = αhOh + αthlOt
hl + αthqOt

hq + αshlOs
hl + αshqOs

hq + αhuOhu + αhdOhd + αheOhe

+ αtllOt
ll + αtlqOt

lq + αsllOs
ll + αslqOs

lq + αleOle + αqeOqe + αluOlu + αldOld

+ αeeOee + αeuOeu + αedOed + . . . , (A.23)
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where the list of operators was given in Eqs. (8)-(10), and the different coefficients have the

following expressions:

αh = g′ 2[δ2
++ − δ2

−+] ,

αthl =
g2

L

2
G++
l , αthq =

g2
L

2
G++
q ,

αshl = −g′ 2

2
G++
l + g2

RQZ′(l)G−+
l , αshq = g′ 2

6
G++
q + g2

RQZ′(q)G−+
q ,

αhu = 2g′ 2

3
G++
u + g2

RQZ′(u)G−+
u , αhd = −g′ 2

3
G++
d + g2

RQZ′(d)G−+
d ,

αhe = −g′ 2G++
e + g2

RQZ′(e)G−+
e ,

αtll = g2
LG

++
ll , αtlq = g2

LG
++
lq ,

αsll = g′ 2

4
G++
ll + g2

Z′Q2
Z′(l)G−+

ll , αslq = −g′ 2

12
G++
lq + g2

Z′QZ′(l)QZ′(q)G−+
lq ,

αle = g′ 2

2
G++
le + g2

Z′QZ′(l)QZ′(e)G−+
le , αqe = −g′ 2

6
G++
qe + g2

Z′QZ′(q)QZ′(e)G−+
qe ,

αlu = −g′ 2

3
G++
lu + g2

Z′QZ′(l)QZ′(u)G−+
lu , αld = g′ 2

6
G++
ld + g2

Z′QZ′(l)QZ′(d)G−+
ld ,

αee = g′ 2G++
ee + g2

Z′QZ′(e)2G−+
ee , αeu = −2g′ 2

3
G++
eu + g2

Z′QZ′(e)QZ′(u)G−+
eu ,

αed = g′ 2

3
G++
ed + g2

Z′QZ′(e)QZ′(d)G−+
ed ,

(A.24)

with gL = g5L/
√
L, and similarly for the other gauge couplings. Here we use the notation

QZ′(ψ) to denote the charge QZ′ in Eq. (A.4) for the fermion ψ.

2. Heavy fermion effects at one loop

The leading effects, due to the KK excitations that mix with the top quark, can be

computed using the results in Refs.[19, 20]. The one-loop contributions due to quarks to the

T and S oblique parameters are

T =
3

16πs2c2m2
Z

×
{
∑

i,j

(
V L
ij V

L∗
ij + V R

ij V
R∗
ij

)
θ+(Mii,Mjj) + 2 Re

(
V L
ij V

R∗
ij

)
θ−(Mii,Mjj) (A.25)

−
∑

i

i−1∑

j

(
UL
ijU

L∗
ij + UR

ijU
R∗
ij

)
θ+(Mii,Mjj) + 2 Re

(
UL
ijU

R∗
ij

)
θ−(Mii,Mjj)

}
,

S =
3

4π

∑

i,j

[(
UL
ijY

L
ji + UR

ijY
R
ji

)
χ̄+(Mii,Mjj) +

(
UL
ijY

R
ji + UR

ijY
L
ji

)
χ̄−(Mii,Mjj)

]
,

(A.26)
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where the indices i, j run over all fermions in the theory (SM fermions and their KK

excitations),

θ+(y1, y2) = y2
1 + y2

2 −
2y2

1y
2
2

y2
1 − y2

2

ln
y2

1

y2
2

, (A.27)

θ−(y1, y2) = 2y1y2

(
2y2

1y
2
2

y2
1 − y2

2

ln
y2

1

y2
2

− 2

)
, (A.28)

and

χ̄+(y1, y2) =
5(y4

1 + y4
2) − 22y2

1y
2
2

9(y2
1 − y2

2)
2

+
3y2

1y
2
2(y

2
1 + y2

2) − (y6
1 + y6

2)

3(y2
1 − y2

2)
3

ln

(
y2

1

y2
2

)
− 2

3
ln

(
y1y2

µ2

)
,

χ̄−(y1, y2) =
y1y2

(y2
1 − y2

2)
3

[
y4

1 − y4
2 − 2y2

1y
2
2 ln

(
y2

1

y2
2

)]
. (A.29)

In the above, M is the (diagonal) mass matrix, containing all fermions in the theory, V L

(V R) is the matrix of couplings of LH (RH) fermion fields to W 1
µ in the mass eigenstate

basis, and UL (UR) is the corresponding matrix of couplings to W 3
µ . The matrices UL,R are

hermitian. Finally, Y L,R are the matrices of hypercharges for left- and right-handed fermions

in the mass eigenstate basis.

The leading one-loop contribution to the ZbLb̄L coupling, that comes from the quarks

with charge 2/3, reads

δgZbb =
α

2π

{ ∑

i

[
V L
ib V

L
ib

(
FSM(ri) + F̃ (UL

ii/2 − 1/2, UR
ii /2, ri)

)]
− FSM(rt)

+
∑

i<j

V L
ib V

L
jbF(UL

ij/2, U
R
ij , ri, rj)

}
, (A.30)

where ri ≡ m2
i /m

2
W and

FSM(r) =
1

8s2

r(r − 1)(r − 6) + r(3r + 2) ln r

(r − 1)2
,

F̃ (g̃L, g̃R, r) =
1

8s2

[
rg̃L

(
2 − 4

r − 1
ln r

)
− rg̃R

(
∆ +

2r − 5

r − 1
+
r2 − 2r + 4

(r − 1)2
ln r

)]
,

F(g̃L, g̃R, r, r
′) =

1

4s2(r′ − r)

{
2g̃L

[
r − 1

r′ − 1
r′ 2 ln r′ − r′ − 1

r − 1
r2 ln r

]

−g̃R
√
rr′
[
(∆ + 1)(r′ − r) +

r′ + 4

r′ − 1
r′ ln r′ − r + 4

r − 1
r ln r

]}
. (A.31)
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