180 research outputs found

    Modulation of Colorectal Cancer Risk by Polymorphisms in 51Gln/His, 64Ile/Val, and 148Asp/Glu of APEX Gene; 23Gly/Ala of XPA Gene; and 689Ser/Arg of ERCC4 Gene

    Get PDF
    Polymorphisms in DNA repair genes may affect the activity of the BER (base excision repair) and NER (nucleotide excision repair) systems. Using DNA isolated from blood taken from patients (n = 312) and a control group (n = 320) with CRC, we have analyzed the polymorphisms of selected DNA repair genes and we have demonstrated that genotypes 51Gln/His and 148Asp/Glu of APEX gene and 23Gly/Ala of XPA gene may increase the risk of colorectal cancer. At the same time analyzing the gene-gene interactions, we suggest the thesis that the main factor to be considered when analyzing the impact of polymorphisms on the risk of malignant transformation should be intergenic interactions. Moreover, we are suggesting that some polymorphisms may have impact not only on the malignant transformation but also on the stage of the tumor

    Synergistic Effect of Vitamin C on DNA Damage Induced by Cadmium

    Get PDF
    Abstract. Salts of divalent cadmium are well-known human mutagens and carcinogens. In the present work, the ability of vitamin C to modulate genotoxic effects of cadmium chloride on human lymphocytes was assessed using single cell gel electrophoresis (comet assay). Vitamin C at 20 and 100 µmol/l and cadmium at 5, 30 and 150 µmol/l significantly increased the tail moment of lymphocytes. Vitamin C also increased the tail moment of cells exposed to cadmium. This effect was concentration-dependent: the higher the vitamin C concentration the greater the tail moment. The combined effects of cadmium and vitamin C were more pronounced at all concentrations tested than the sum of the effects of the compounds applied separately (p < 0.05), so cadmium and vitamin C can be considered to have synergistic effects. The results obtained can be partly explained by the participation of cadmium in the Fenton reaction and reduction of its oxidized form by vitamin C

    Restoring mucosal barrier function and modifying macrophage phenotype with an extracellular matrix hydrogel: potential therapy for ulcerative colitis

    Get PDF
    Background & Aims: Despite advances in therapeutic options, more than half of all patients with ulcerative colitis (UC) do not achieve long-term remission, many require colectomy, and the disease still has a marked negative impact on quality of life. Extracellular matrix (ECM) bioscaffolds facilitate the functional repair of many soft tissues by mechanisms that include mitigation of pro-inflammatory macrophage phenotype and mobilization of endogenous stem/progenitor cells. The aim of the present study was to determine if an ECM hydrogel therapy could influence outcomes in an inducible rodent model of UC. Methods: The dextran sodium sulfate (DSS)-colitis model was used in male Sprague Dawley rats. Animals were treated via enema with an ECM hydrogel and the severity of colitis was determined by clinical and histologic criteria. Lamina propria cells were isolated and the production of inflammatory mediators was quantified. Mucosal permeability was assessed in-vivo by administering TRITC-dextran and in-vitro using transepithelial electrical resistance (TEER). Results: ECM hydrogel therapy accelerated healing and improved outcome. The hydrogel was adhesive to colonic tissue, which allowed for targeted delivery of the therapy, and resulted in a reduction in clinical and histologic signs of disease. ECM hydrogel facilitated functional improvement of colonic epithelial barrier function and the resolution of the pro-inflammatory state of tissue macrophages. Conclusions: The present study shows that a nonsurgical and nonpharmacologic ECM-based therapy can abate DSS-colitis not by immunosuppression but by promoting phenotypic change in local macrophage phenotype and rapid replacement of the colonic mucosal barrie

    Macrophage phenotype in response to ECM bioscaffolds

    Get PDF
    Macrophage presence and phenotype are critical determinants of the healing response following injury. Downregulation of the pro-inflammatory macrophage phenotype has been associated with the therapeutic use of bioscaffolds composed of extracellular matrix (ECM), but phenotypic characterization of macrophages has typically been limited to small number of non-specific cell surface markers or expressed proteins. The present study determined the response of both primary murine bone marrow derived macrophages (BMDM) and a transformed human mononuclear cell line (THP-1 cells) to degradation products of two different, commonly used ECM bioscaffolds; urinary bladder matrix (UBM-ECM) and small intestinal submucosa (SIS-ECM). Quantified cell responses included gene expression, protein expression, commonly used cell surface markers, and functional assays. Results showed that the phenotype elicited by ECM exposure (MECM) is distinct from both the classically activated IFNγ + LPS phenotype and the alternatively activated IL-4 phenotype. Furthermore, the BMDM and THP-1 macrophages responded differently to identical stimuli, and UBM-ECM and SIS-ECM bioscaffolds induced similar, yet distinct phenotypic profiles. The results of this study not only characterized an MECM phenotype that has anti-inflammatory traits but also showed the risks and challenges of making conclusions about the role of macrophage mediated events without consideration of the source of macrophages and the limitations of individual cell markers
    corecore