81 research outputs found

    Calculations of Branching Ratios for Radiative-Capture, One-Proton, and Two-Neutron Channels in the Fusion Reaction 209^{209}Bi+70^{70}Zn

    Full text link
    We discuss the possibility of the non-one-neutron emission channels in the cold fusion reaction 70^{70}Zn + 209^{209}Bi to produce the element Z=113. For this purpose, we calculate the evaporation-residue cross sections of one-proton, radiative-capture, and two-neutron emissions relative to the one-neutron emission in the reaction 70^{70}Zn + 209^{209}Bi. To estimate the upper bounds of those quantities, we vary model parameters in the calculations, such as the level-density parameter and the height of the fission barrier. We conclude that the highest possibility is for the 2n reaction channel, and its upper bounds are 2.4% and at most less than 7.9% with unrealistic parameter values, under the actual experimental conditions of [J. Phys. Soc. Jpn. {\bf 73} (2004) 2593].Comment: 6 pages, 4 figure

    Vitality, Language Use, and Life Satisfaction : A Study of Bilingual Hungarian Adolescents Living in Romania

    Get PDF
    This study examined the relationship between objective and subjective vitality, in-group language use, and life satisfaction among two groups of bilingual Hungarians adolescents living in Romania: a low objective vitality group from Cluj-Napoca/Kolozsvar, where Hungarians are the demographic minority, and a high objective vitality group from Sfantu Gheorghe/Sepsiszentgyorgy, where Hungarians are the demographic majority. Consistent with predictions, the high objective vitality group reported higher subjective Hungarian vitality, lower subjective Romanian vitality, more frequent use of the Hungarian language, and higher life satisfaction, compared with the low objective vitality group. The effects of objective vitality on language use were partially mediated by subjective Romanian (but not Hungarian) vitality. Conversely, the effects of objective vitality on life satisfaction were fully mediated by subjective Hungarian (but not Romanian) vitality.Peer reviewe

    Gas chemical investigation of hafnium and zirconium complexes with hexafluoroacetylacetone using preseparated short-lived radioisotopes

    Get PDF
    Volatile metal complexes of the group 4 elements Zr and Hf with hexafluoroacetylacetonate (hfa) have been studied using short-lived radioisotopes of the metals. The new technique of physical preseparation has been employed where reaction products from heavy-ion induced fusion reactions are isolated in a physical recoil separator - the Berkeley Gas-filled Separator in our work - and made available for chemistry experiments. Formation and decomposition of M(hfa)4 (M=Zr, Hf) has been observed and the interaction strength with a fluorinated ethylene propylene (FEP) Teflon surface has been studied. From the results of isothermal chromatography experiments, an adsorption enthalpy of -ΔHa=(57±3)kJ/mol was deduced. In optimization experiments, the time for formation of the complex and its transport to a counting setup installed outside of the irradiation cave was minimized and values of roughly one minute have been reached. The half-life of 165Hf, for which conflicting values appear in the literature, was measured to be (73.9±0.8)s. Provided that samples suitable for α-spectroscopy can be prepared, the investigation of rutherfordium (Rf), the transactinide member of group 4, appears possible. In the future, based on the studies presented here, it appears possible to investigate short-lived single atoms produced with low rates ( e.g. , transactinide isotopes) in completely new chemical systems, e.g. , as metal complexes with organic ligands as used here or as organometallic compound

    High-\u3cem\u3eK\u3c/em\u3e Multi-quasiparticle States and Rotational Bands in \u3csup\u3e255\u3c/sup\u3e\u3csub\u3e103\u3c/sub\u3eLr.

    Get PDF
    Two isomeric states have been identified in 255Lr. The decay of the isomers populates rotational structures. Comparison with macroscopic-microscopic calculations suggests that the lowest observed sequence is built upon the [624]9/2+ Nilsson state. However, microscopic cranked relativistic Hartree-Bogoliubov (CRHB) calculations do not reproduce the moment of inertia within typical accuracy. This is a clear challenge to theories describing the heaviest elements

    Multi-quasiparticle States in \u3csup\u3e256\u3c/sup\u3eRf

    Get PDF
    Excited states in 256Rf were populated via the 208Pb(50Ti,2n) fusion–evaporation reaction. Delayed γ-ray and electron decay spectroscopy was performed and three isomeric states in 256Rf have been identified. A fourth low-energy nonyrast state was identified from the γ-ray decay of one of the higher lying isomers. The states are interpreted as multi-quasiparticle excitations

    Energy Proportionality and Workload Consolidation for Latency-Critical Applications

    Get PDF
    Energy proportionality and workload consolidation are important objectives towards increasing efficiency in large-scale datacenters. Our work focuses on achieving these goals in the presence of applications with microsecond-scale tail latency requirements. Such applications represent a growing subset of datacenter workloads and are typically deployed on dedicated servers, which is the simplest way to ensure low tail latency across all loads. Unfortunately, it also leads to low energy efficiency and low resource utilization during the frequent periods of medium or low load. We present the OS mechanisms and dynamic control needed to adjust core allocation and voltage/frequency settings based on the measured delays for latency-critical workloads. This allows for energy proportionality and frees the maximum amount of resources per server for other background applications, while respecting service-level objectives. The two key mechanism allow us to detect increases in queuing latencies and to re-assign flow groups between the threads of a latency-critical application in milliseconds without dropping or reordering packets. We compare the efficiency of our solution to the Pareto-optimal frontier of 224 distinct static configurations. Dynamic resource control saves 44%–54% of processor energy, which corresponds to 85%–93% of the Pareto-optimal upper bound. Dynamic resource control also allows background jobs to run at 32%–46% of their standalone throughput, which corresponds to 82%–92% of the Pareto bound
    corecore