743 research outputs found
Bayesian Analysis of ODE's: solver optimal accuracy and Bayes factors
In most relevant cases in the Bayesian analysis of ODE inverse problems, a
numerical solver needs to be used. Therefore, we cannot work with the exact
theoretical posterior distribution but only with an approximate posterior
deriving from the error in the numerical solver. To compare a numerical and the
theoretical posterior distributions we propose to use Bayes Factors (BF),
considering both of them as models for the data at hand. We prove that the
theoretical vs a numerical posterior BF tends to 1, in the same order (of the
step size used) as the numerical forward map solver does. For higher order
solvers (eg. Runge-Kutta) the Bayes Factor is already nearly 1 for step sizes
that would take far less computational effort. Considerable CPU time may be
saved by using coarser solvers that nevertheless produce practically error free
posteriors. Two examples are presented where nearly 90% CPU time is saved while
all inference results are identical to using a solver with a much finer time
step.Comment: 28 pages, 6 figure
Phospholemman, a Single-Span Membrane Protein, Is an Accessory Protein of Na,K-ATPase in Cerebellum and Choroid Plexus
Phospholemman (FXYD1) is a homolog of the Na,K-ATPase Îł subunit (FXYD2), a small accessory protein that modulates ATPase activity. Here we show that phospholemman is highly expressed in selected structures in the CNS. It is most abundant in cerebellum, where it was detected in the molecular layer, in Purkinje neurons, and in axons traversing the granule cell layer. Phospholemman was particularly enriched in choroid plexus, the organ that secretes CSF in the ventricles, where it colocalized with Na,K-ATPase in the apical membrane. It was also enriched, with Na,K-ATPase, in certain tanycytes or ependymal cells of the ventricle wall. Two different experimental approaches demonstrated that phospholemman physically associated with the Na,K-ATPase in cerebellum and choroid plexus: the proteins copurified after detergent treatment and co-immunoprecipitated from solubilized crude membranes using either anti-phospholemman or anti-Na,K-ATPase antibodies. Phospholemman antibodies precipitated all three Na,K-ATPase α subunit isoforms (α1âα3) from cerebellum, indicating that the interaction is not specific to a particular α isoform and consistent with the presence of phospholemman in both neurons and glia. Antibodies against the C-terminal domain of phospholemman reduced Na,K-ATPase activityin vitro without effect on Na+affinity. At least two other FXYD family members have been detected in the CNS, suggesting that additional complexity of sodium pump regulation will be found
Unconventional magnetism in all-carbon nanofoam
We report production of nanostructured carbon foam by a high-repetition-rate,
high-power laser ablation of glassy carbon in Ar atmosphere. A combination of
characterization techniques revealed that the system contains both sp2 and sp3
bonded carbon atoms. The material is a novel form of carbon in which
graphite-like sheets fill space at very low density due to strong hyperbolic
curvature, as proposed for ?schwarzite?. The foam exhibits ferromagnetic-like
behaviour up to 90 K, with a narrow hysteresis curve and a high saturation
magnetization. Such magnetic properties are very unusual for a carbon
allotrope. Detailed analysis excludes impurities as the origin of the magnetic
signal. We postulate that localized unpaired spins occur because of topological
and bonding defects associated with the sheet curvature, and that these spins
are stabilized due to the steric protection offered by the convoluted sheets.Comment: 14 pages, including 2 tables and 7 figs. Submitted to Phys Rev B 10
September 200
Potential role of the intestinal microbiota of the mother in neonatal immune education
Mucosal dendritic cells are at the heart of decision-making processes that dictate immune reactivity to intestinal microbes. They ensure tolerance to commensal bacteria and a vigorous immune response to pathogens. It has recently been demonstrated that the former involves a limited migration of bacterially loaded dendritic cells from the Peyer's patches to the mesenteric lymph nodes. During lactation, cells from gut-associated lymphoid tissue travel to the breast via the lymphatics and peripheral blood. Here, we show that human peripheral blood mononuclear cells and breast milk cells contain bacteria and their genetic material during lactation. Furthermore, we show an increased bacterial translocation from the mouse gut during pregnancy and lactation and the presence of bacterially loaded dendritic cells in lactating breast tissue. Our observations show bacterial translocation as a unique physiological event, which is increased during pregnancy and lactation. They suggest endogenous transport of intestinally derived bacterial components within dendritic cells destined for the lactating mammary gland. They also suggest neonatal immune imprinting by milk cells containing commensal-associated molecular pattern
Effect of sputter gas on the physical and magnetic microstructure of Co/Cu multilayers
The physical structure of Co/Cu multilayers, sputtered in different gases (Ar, Kr, and Xe) together with the domain structures that these films support have been investigated using electron microscopy in an attempt to explain the differences in their measured magnetoresistance (MR). Both planar and crossâsectional analyses were undertaken. Due to only partial antiferromagnetic coupling submicron domain structures were observed by Lorentz microscopy in all multilayers. The complex nature of these domain structures made classification difficult, although small magnetic field application allowed wall motion and nucleation to be observed. All films were polycrystalline in nature, although average grains sizes differed. However, smoother interfaces together with less well defined crystal boundaries were observed in the Kr and Xe sputtered films. This trend did not correlate with giant MR (GMR) measurements as the Xe sputtered films had the lowest GMR value of the three
Potential role of the intestinal microbiota of the mother in neonatal immune education
Mucosal dendritic cells are at the heart of decision-making processes that dictate immune reactivity to intestinal microbes. They ensure tolerance to commensal bacteria and a vigorous immune response to pathogens. It has recently been demonstrated that the former involves a limited migration of bacterially loaded dendritic cells from the Peyer's patches to the mesenteric lymph nodes. During lactation, cells from gut-associated lymphoid tissue travel to the breast via the lymphatics and peripheral blood. Here, we show that human peripheral blood mononuclear cells and breast milk cells contain bacteria and their genetic material during lactation. Furthermore, we show an increased bacterial translocation from the mouse gut during pregnancy and lactation and the presence of bacterially loaded dendritic cells in lactating breast tissue. Our observations show bacterial translocation as a unique physiological event, which is increased during pregnancy and lactation. They suggest endogenous transport of intestinally derived bacterial components within dendritic cells destined for the lactating mammary gland. They also suggest neonatal immune imprinting by milk cells containing commensal-associated molecular patterns.Facultad de Ciencias Exacta
Potential role of the intestinal microbiota of the mother in neonatal immune education
Mucosal dendritic cells are at the heart of decision-making processes that dictate immune reactivity to intestinal microbes. They ensure tolerance to commensal bacteria and a vigorous immune response to pathogens. It has recently been demonstrated that the former involves a limited migration of bacterially loaded dendritic cells from the Peyer's patches to the mesenteric lymph nodes. During lactation, cells from gut-associated lymphoid tissue travel to the breast via the lymphatics and peripheral blood. Here, we show that human peripheral blood mononuclear cells and breast milk cells contain bacteria and their genetic material during lactation. Furthermore, we show an increased bacterial translocation from the mouse gut during pregnancy and lactation and the presence of bacterially loaded dendritic cells in lactating breast tissue. Our observations show bacterial translocation as a unique physiological event, which is increased during pregnancy and lactation. They suggest endogenous transport of intestinally derived bacterial components within dendritic cells destined for the lactating mammary gland. They also suggest neonatal immune imprinting by milk cells containing commensal-associated molecular patterns.Facultad de Ciencias Exacta
- âŠ