1,328 research outputs found
Observations of Dispersion Cancellation of Entangled Photon Pairs
An experimental study of the dispersion cancellation occurring in
frequency-entangled photon pairs is presented. The approach uses time-resolved
up conversion of the pairs, which has temporal resolution at the fs level, and
group-delay dispersion sensitivity of under
experimental conditions. The cancellation is demonstrated with dispersion
stronger than in the signal and idler
modes. The observations represent the generation, compression, and
characterization of ultrashort biphotons with correlation width as small as 6.8
times the degenerate optical period.Comment: 5 pages, 3 figure
The role of cattle manure in enhancing on-farm productivity, macro- and micro-nutrient uptake, and profitability of maize in the Guinea savanna
An on-farm trial was conducted in the northern Guinea savanna of Nigeria, over a period of five years, with the objectives of quantifying the effects on maize of applying cattle manure in combination with synthetic fertilizer with regard to soil characteristics, yield, plant nutrition and profitability. Maize grain yield was significantly increased by the annual application of cattle manure, compared to maize receiving an equal amount of N through synthetic fertilizer, but only from the third year of the experiment. The application of manure resulted in higher soil Kjel N, Bray-I P and exchangeable K values, and an increased N utilization efficiency by maize, suggesting that yield-limiting factors other than N deficiencies were of lesser importance than in the treatment receiving sole inorganic fertilizer. Nutrients other than N applied via the manure, particularly P, K and/or B, may have contributed to the higher grain yields in treatments receiving manure. A partial budgeting analysis revealed that, over a 5-year period, investments in the application of manure, in combination with synthetic fertilizer, resulted in higher margins than the application of fertilizer alone. However, analyses of marginal rates of return of changes from low urea N to high urea N or additional manure applications suggested that it was more profitable to invest in additional urea than in organic manure in the first two years of the experiment. The results suggested that manure applications, even when applied at relatively high rates, did not serve as a quick fix to on-farm soil fertility problems, but over a longer period, manure applied in combination with synthetic fertilizers did provide a significant and profitable contribution to enhanced cereal production
Determinants of adoption and intensity of use of balanced nutrient management systems technologies in the northern Guinea savanna of Nigeria
As part of a major effort to address soil fertility decline in West Africa, a project on Balanced Nutrient Management Systems (BNMS) has since 2000 been implemented in the northern Guinea savanna (NGS) of Nigeria. The project has tested and promoted two major technology packages, including a combined application of inorganic fertilizer and manure (BNMS-manure) and a soybean/maize rotation practice referred to as BNMS-rotation. This study employed Tobit model to examine factors that influence the adoption and intensity of utilization of BNMS technologies in the NGS of Nigeria. Results showed that less than 10% of the sample households adopted at least one of the two components of the technology package by the end of 2002. However, by 2005 the adoption of BNMS-rotation had reached 40% while that of BNMS-manure had reached 48%. A number of factors such as access to credit, farmers’ perception of the state of land degradation, and assets ownership were found to be significant in determining farmers’ adoption decisions on BNMS-manure while off-farm income was found to be significant in determining farmers’ adoption decisions on BNMS-rotation. Extension services and farmer-to-farmer technology diffusion channels were the major means of transfer of BNMS technologies.Adoption, BNMS-manure, BNMS-rotation, Northern Guinea Savanna (NGS)., Agricultural and Food Policy, Community/Rural/Urban Development, Crop Production/Industries, Environmental Economics and Policy, Farm Management, Food Consumption/Nutrition/Food Safety, Food Security and Poverty, Health Economics and Policy, Institutional and Behavioral Economics, International Relations/Trade, Livestock Production/Industries, Productivity Analysis, Research and Development/Tech Change/Emerging Technologies, Research Methods/ Statistical Methods,
Does crop-livestock integration lead to improved crop production in the savanna of West Africa?
Integrated crop-livestock farming in the Guinea savanna of West Africa is often assumed to lead to synergies between crop and livestock production, thereby improving the overall productivity and resilience of agricultural production. Whether these synergies actually occur remains poorly studied. On-farm trials were conducted in northern Nigeria over a period of four years to assess the agronomic and economic performance of maize-legume systems with and without the integration of livestock (goats). Groundnut-maize rotations with livestock achieved the highest carry-over of nutrients as manure from one season to the next, covering approximately one-third of the expected N, P and K uptake by maize and reducing the demand for synthetic fertilizers. However, the advantage of lower fertilizer costs in rotations with livestock was offset by higher labour costs for manure application and slightly lower values of maize grain. Overall, no clear agronomic or economic benefits for crop production were observed from the combined application of manure and synthetic fertilizer over the application of synthetic fertilizer only, probably because the amounts of manure applied were relatively small. Legume-maize rotations achieved higher cereal yields, a better response to labour and fertilizer inputs, and a higher profitability than maize-based systems with no or only a small legume component, irrespective of the presence of livestock. Livestock at or near the farm could nevertheless make legume cultivation economically more attractive by increasing the value of legume haulms. The results suggested that factors other than crop benefits, e.g. livestock providing tangible and non-tangible benefits and opportunities for animal traction, could be important drivers for the ongoing integration of crop and livestock production in the savann
Ultrafast-pulse diagnostic using third-order frequency-resolved optical gating in organic films
We report on the diagnostic of ultrafast pulses by frequency-resolved optical gating (FROG) based on strong third-harmonic generation (THG) in amorphous organic thin films. The high THG conversion efficiency of these films allows for the characterization of sub-nanojoule short pulses emitting at telecommunication wavelengths using a low cost portable fiber spectrometer
Dispersive Elements for Enhanced Laser Gyroscopy and Cavity Stabilization
We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. We find an enhancement in the sensitivity of a laser gyroscope to rotation for normal dispersion, while anomalous dispersion can be used to self-stabilize an optical cavity. Our results indicate that atomic media, even coherent superpositions in multilevel atoms, are of limited use for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice-versa. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together. We find that for over-coupled resonators, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Under-coupled resonators can be used to stabilize the frequency of a laser cavity, but result in a concomitant increase in amplitude fluctuations. As a more ideal solution we propose the use of a variety of coupled-resonator-induced transparency that is accompanied by anomalous dispersion
Narrowband spectroscopy by all-optical correlation of broadband pulses
High peak power ultrafast lasers are widely used in nonlinear spectroscopy
but often limit its spectral resolution because of the broad frequency
bandwidth of ultrashort laser pulses. Improving the resolution by achieving
spectrally narrow excitation of, or emission from, the resonant medium by means
of multi-photon interferences has been the focus of many recent developments in
ultrafast spectroscopy. We demonstrate an alternative approach, in which high
resolution is exercised by detecting narrow spectral correlations between
broadband excitation and emission optical fields. All-optical correlation
analysis, easily incorporated into the traditional spectroscopic setup, enables
direct, robust and simultaneous detection of multiple narrow resonances with a
single femtosecond pulse.Comment: 5 pages, 4 figures, submitted to PR
Dispersion-Enhanced Laser Gyroscope
We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the output modulation to determine the conditions for enhanced gyroscopic sensitivities. The element is treated as both a phase and amplitude filter, and the time-dependence of the cavity field is considered. Both atomic gases (two-level and multi-level) and optical resonators (single and coupled) are considered and compared as dispersive elements. We find that it is possible to simultaneously enhance the gyro scale factor sensitivity and suppress the dead band by using an element with anomalous dispersion that has greater loss at the carrier frequency than at the side-band frequencies, i.e., an element that simultaneously pushes and intensifies the perturbed cavity modes, e.g. a two-level absorber or an under-coupled optical resonator. The sensitivity enhancement is inversely proportional to the effective group index, becoming infinite at a group index of zero. However, the number of round trips required to reach a steady-state also becomes infinite when the group index is zero (or two). For even larger dispersions a steady-state cannot be achieved, and nonlinear dynamic effects such as bistability and periodic oscillations are predicted in the gyro response
Transient absorption and reshaping of ultrafast XUV light by laser-dressed helium
We present a theoretical study of transient absorption and reshaping of
extreme ultraviolet (XUV) pulses by helium atoms dressed with a moderately
strong infrared (IR) laser field. We formulate the atomic response using both
the frequency-dependent absorption cross section and a time-frequency approach
based on the time-dependent dipole induced by the light fields. The latter
approach can be used in cases when an ultrafast dressing pulse induces
transient effects, and/or when the atom exchanges energy with multiple
frequency components of the XUV field. We first characterize the dressed atom
response by calculating the frequency-dependent absorption cross section for
XUV energies between 20 and 24 eV for several dressing wavelengths between 400
and 2000 nm and intensities up to 10^12 W/cm^2. We find that for dressing
wavelengths near 1600 nm, there is an Autler-Townes splitting of the 1s ---> 2p
transition that can potentially lead to transparency for absorption of XUV
light tuned to this transition. We study the effect of this XUV transparency in
a macroscopic helium gas by incorporating the time-frequency approach into a
solution of the coupled Maxwell-Schr\"odinger equations. We find rich temporal
reshaping dynamics when a 61 fs XUV pulse resonant with the 1s ---> 2p
transition propagates through a helium gas dressed by an 11 fs, 1600 nm laser
pulse.Comment: 13 pages, 8 figures, 1 table, RevTeX4, revise
Phase shifts in nonresonant coherent excitation
Far-off-resonant pulsed laser fields produce negligible excitation between
two atomic states but may induce considerable phase shifts. The acquired phases
are usually calculated by using the adiabatic-elimination approximation. We
analyze the accuracy of this approximation and derive the conditions for its
applicability to the calculation of the phases. We account for various sources
of imperfections, ranging from higher terms in the adiabatic-elimination
expansion and irreversible population loss to couplings to additional states.
We find that, as far as the phase shifts are concerned, the adiabatic
elimination is accurate only for a very large detuning. We show that the
adiabatic approximation is a far more accurate method for evaluating the phase
shifts, with a vast domain of validity; the accuracy is further enhanced by
superadiabatic corrections, which reduce the error well below .
Moreover, owing to the effect of adiabatic population return, the adiabatic and
superadiabatic approximations allow one to calculate the phase shifts even for
a moderately large detuning, and even when the peak Rabi frequency is larger
than the detuning; in these regimes the adiabatic elimination is completely
inapplicable. We also derive several exact expressions for the phases using
exactly soluble two-state and three-state analytical models.Comment: 10 pages, 7 figure
- …
