3,326 research outputs found
ECUT: Energy Conversion and utilization Technologies program biocatalysis research activity. Generation of chemical intermediates by catalytic oxidative decarboxylation of dilute organic acids
A rhodium-based catalyst was prepared and preliminary experiments were completed where the catalyst appeared to decarboxylate dilute acids at concentrations of 1 to 10 vol%. Electron spin resonance spectroscoy was used to characterize the catalyst as a first step leading toward modeling and optimization of rhodium catalysts. Also, a hybrid chemical/biological process for the production of hydrocarbons has been assessed. These types of catalysts could greatly increase energy efficiency of this process
Resonant Scattering and Recombination in CAL 87
The eclipsing supersoft X-ray binary CAL 87 has been observed with Chandra on
August 13/14, 2001 for nearly 100 ksec, covering two full orbital cycles and
three eclipses. The shape of the eclipse light curve derived from the
zeroth-order photons indicates that the size of the X-ray emission region is
about 1.5 solar radii. The ACIS/LETG spectrum is completely dominated by
emission lines without any noticeable continuum. The brightest emission lines
are significantly redshifted and double-peaked, suggestive of emanating in a
2000 km/s wind. We model the X-ray spectrum by a mixture of recombination and
resonant scattering. This allows us to deduce the temperature and luminosity of
the ionizing source to be kT = 50-100 eV and L_X = 5E37 erg/s.Comment: To appear in Proceedings of IAU Coll. 194 "Compact binaries in the
Galaxy and beyond" (Rev. Mex. A&A Conf. Series), eds. G. Tovmassian and E.
Sio
Detection potential to point-like neutrino sources with the NEMO-km3 telescope
The NEMO Collaboration is conducting an R&D activity towards the construction
of a Mediterranean km3 neutrino telescope. In this work, we present the results
of Monte Carlo simulation studies on the capability of the proposed NEMO
telescope to detect and identify point-like sources of high energy muon
neutrinos.Comment: To be published on BCN06 proceedings (Barcelona, July 4-7, 2006
Planetary Protection Concerns During Pre-Launch Radioisotope Power System Final Integration Activities
The Advanced Stirling Radioisotope Generator (ASRG) is a next-generation radioisotope-based power system that is currently being developed as an alternative to the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Power sources such as these may be needed for proposed missions to solar system planets and bodies that have challenging Planetary Protection (PP) requirements (e.g. Mars, Europa, Enceladus) that may support NASA s search for life, remnants of past life, and the precursors of life. One concern is that the heat from the ASRG could potentially create a region in which liquid water may occur. As advised by the NASA Planetary Protection Officer, when deploying an ASRG to Mars, the current COSPAR/NASA PP policy should be followed for Category IVc mission. Thus, sterilization processing of the ASRG to achieve bioburden reduction would be essential to meet the Planetary Protection requirements. Due to thermal constraints and associated low temperature limits of elements of the ASRG, vapor hydrogen peroxide (VHP) was suggested as a candidate alternative sterilization process to complement dry heat microbial reduction (DHMR) for the assembled ASRG. The following proposed sterilization plan for the ASRG anticipates a mission Category IVc level of cleanliness. This plan provides a scenario in which VHP is used as the final sterilization process. Keywords: Advanced Stirling Radioisotope Generator (ASRG), Planetary Protection (PP), Vapor hydrogen peroxide (VHP) sterilization
The impact of asking intention or self-prediction questions on subsequent behavior: a meta-analysis
The current meta-analysis estimated the magnitude of the impact of asking intention and self-prediction questions on rates of subsequent behavior, and examined mediators and moderators of this question–behavior effect (QBE). Random-effects meta-analysis on 116 published tests of the effect indicated that intention/prediction questions have a small positive effect on behavior (d+ = 0.24). Little support was observed for attitude accessibility, cognitive dissonance, behavioral simulation, or processing fluency explanations of the QBE. Multivariate analyses indicated significant effects of social desirability of behavior/behavior domain (larger effects for more desirable and less risky behaviors), difficulty of behavior (larger effects for easy-to-perform behaviors), and sample type (larger effects among student samples). Although this review controls for co-occurrence of moderators in multivariate analyses, future primary research should systematically vary moderators in fully factorial designs. Further primary research is also needed to unravel the mechanisms underlying different variants of the QBE
Evaluating techniques for sampling stream crayfish (paranephrops planifrons)
We evaluated several capture and analysis techniques for estimating abundance and size structure of freshwater crayfish (Paranephrops planifrons) (koura) from a forested North Island, New Zealand stream to provide a methodological basis for future population studies. Direct observation at night and collecting with baited traps were not considered useful. A quadrat sampler was highly biased toward collecting small individuals. Handnetting at night and estimating abundances using the depletion method were not as efficient as handnetting on different dates and analysing by a mark-recapture technique. Electrofishing was effective in collecting koura from different habitats and resulted in the highest abundance estimates, and mark-recapture estimates appeared to be more precise than depletion estimates, especially if multiple recaptures were made. Handnetting captured more large crayfish relative to electrofishing or the quadrat sampler
M/L, H-alpha Rotation Curves, and HI Measurements for 329 Nearby Cluster and Field Spirals: II. Evidence for Galaxy Infall
We have conducted a study of optical and HI properties of spiral galaxies
(size, luminosity, H-alpha flux distribution, circular velocity, HI gas mass)
to explore the role of gas stripping as a driver of morphological evolution in
clusters. We find a strong correlation between the spiral and S0 fractions
within clusters, and the spiral fraction scales tightly with cluster X-ray gas
luminosity. We explore young star formation and identify spirals that are (1)
asymmetric, with truncated H-alpha emission and HI gas reservoirs on the
leading edge of the disk, on a first pass through the dense intracluster medium
in the cores of rich clusters; (2) strongly HI deficient and stripped, with
star formation confined to the inner 5 kpc/h and 3 disk scale lengths; (3)
reddened, extremely HI deficient and quenched, where star formation has been
halted across the entire disk. We propose that these spirals are in successive
stages of morphological transformation, between infalling field spirals and
cluster S0s, and that the process which acts to remove the HI gas reservoir
suppresses new star formation on a similarly fast timescale. These data suggest
that gas stripping plays a significant role in morphological transformation and
rapid truncation of star formation across the disk.Comment: 24 pages, 12 figures; accepted for publication in AJ;
higher-resolution figures available at http://astronomy.nmsu.edu/nicol
Memory usage verification using Hip/Sleek.
Embedded systems often come with constrained memory footprints. It is therefore essential to ensure that software running on such platforms fulfils memory usage specifications at compile-time, to prevent memory-related software failure after deployment. Previous proposals on memory usage verification are not satisfactory as they usually can only handle restricted subsets of programs, especially when shared mutable data structures are involved. In this paper, we propose a simple but novel solution. We instrument programs with explicit memory operations so that memory usage verification can be done along with the verification of other properties, using an automated verification system Hip/Sleek developed recently by Chin et al.[10,19]. The instrumentation can be done automatically and is proven sound with respect to an underlying semantics. One immediate benefit is that we do not need to develop from scratch a specific system for memory usage verification. Another benefit is that we can verify more programs, especially those involving shared mutable data structures, which previous systems failed to handle, as evidenced by our experimental results
Spatial Interpolants
We propose Splinter, a new technique for proving properties of
heap-manipulating programs that marries (1) a new separation logic-based
analysis for heap reasoning with (2) an interpolation-based technique for
refining heap-shape invariants with data invariants. Splinter is property
directed, precise, and produces counterexample traces when a property does not
hold. Using the novel notion of spatial interpolants modulo theories, Splinter
can infer complex invariants over general recursive predicates, e.g., of the
form all elements in a linked list are even or a binary tree is sorted.
Furthermore, we treat interpolation as a black box, which gives us the freedom
to encode data manipulation in any suitable theory for a given program (e.g.,
bit vectors, arrays, or linear arithmetic), so that our technique immediately
benefits from any future advances in SMT solving and interpolation.Comment: Short version published in ESOP 201
- …
