27 research outputs found

    Spatial and temporal variation in organic acid anion exudation and nutrient anion uptake in the rhizosphere of Lupinus albus L

    Get PDF
    We investigated in situ the temporal patterns and spatial extent of organic acid anion exudation into the rhizosphere solution of Lupinus albus, and its relation with the nutrient anions phosphate, nitrate and sulfate by means of a rhizobox micro suction cup method under P sufficient conditions. We compared the soil solution in the rhizosphere of cluster roots with that in the vicinity of normal roots, nodules and bulk soil. Compared to the other rhizosphere and soil compartments, concentrations of organic acid anions were higher in the vicinity of cluster roots during the exudative burst (citrate, oxalate) and nodules (acetate, malate), while concentrations of inorganic nutrient anions were highest in the bulk soil. Both active cluster roots and nodules were most efficient in taking up nitrate and phosphate. The intensity of citrate exudation by cluster roots was highly variable. The overall temporal patterns during the lifetime of cluster roots were overlaid by a diurnal pattern, i.e. in most cases, the exudation burst consisted of one or more peaks occurring in the afternoon. Multiple exudation peaks occurred daily or were separated by 1 or 2days. Although citrate concentrations decreased with distance from the cluster root apex, they were still significantly higher at a distance of 6 to 10mm than in the bulk soil. Phosphate concentrations were extremely variable in the proximity of cluster roots. While our results indicate that under P sufficient conditions cluster roots take up phosphate during their entire life time, the influence of citrate exudation on phosphate mobilization from soil could not be assessed conclusively because of the complex interactions between P uptake, organic acid anion exudation and P mobilization. However, we observed indications of P mobilization concurrent with the highest measured citrate concentrations. In conclusion, this study provides semiquantitative in situ data on the reactivity of different root segments of L. albus L. in terms of root exudation and nutrient uptake under nutrient sufficient conditions, in particular on the temporal variability during the lifetime of cluster root

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)
    corecore