229 research outputs found

    All-fluid amplifier development for liquid rocket secondary injection thrust vector control Final report

    Get PDF
    Staged vortex amplifier with integral gas generators for liquid rocket secondary injection thrust vector contro

    Binding deficit, A: value-directed remembering for item-specific vs. associative information

    Get PDF
    2018 Spring.Includes bibliographical references.In a series of four experiments I examined whether value enhanced memory for item-specific or associative information. Value indicated the importance of an item at study (i.e., 1 point = low importance, 12 points = high importance), with memory typically being enhanced for high-value information (e.g., Castel, 2008). Utilizing the feature-conjunction paradigm, in which recognition errors for conjunction lures provide a means of examining whether value-enhanced recognition is a result of recollection or familiarity, the Pilot Experiment revealed through increased conjunction errors that value enhanced memory only for item-specific information. In Experiment 1 participants were permitted to self-pace their study and made confidence learning judgments (CLJs) after each recognition judgment. Learners spent more time studying higher-valued words yet demonstrated a similar pattern of increased conjunction errors by value. In Experiment 2, participants were instructed to use either rote repetition or interactive imagery for all words at study. Under these controlled study strategy conditions, conjunction errors were similar across values. In Experiment 3, I examined the influence of value on feature lures. When both feature lures and conjunction lures were presented at test, learners' susceptibility to lures was similar across values, yet learners correctly recognized more high-value old words. Results indicated that both encoding processes and item-based familiarity may contribute to a deficit in binding components of high-value words. These findings are discussed in terms of the negative effects of value on memory for associative information

    Preparation and Properties of Nanocomposites Prepared From Shortened, Functionalized Single-Walled Carbon Nanotubes

    Get PDF
    As part of a continuing materials development activity, low color space environmentally stable polymeric materials that possess sufficient electrical conductivity for electrostatic charge dissipation (ESD) have been investigated. One method of incorporating sufficient electrical conductivity for ESD without detrimental effects on other polymer properties of interest (i.e., optical and thermo-optical) is through the incorporation of single-walled carbon nanotubes (SWNTs). However, SWNTs are difficult to fully disperse in the polymer matrix. One means of improving dispersion is by shortening and functionalizing SWNTs. While this improves dispersion, other properties (i.e., electrical) of the SWNTs can be affected which can in turn alter the final nanocomposite properties. Additionally, functionalization of the polymer matrix can also influence nanocomposite properties obtained from shortened, functionalized SWNTs. The preparation and characterization of nanocomposites fabricated from a polyimide, both functionalized and unfunctionalized, and shortened, functionalized SWNTs will be presented

    Thermal Conductivity of Polyimide/Nanofiller Blends

    Get PDF
    In efforts to improve the thermal conductivity of Ultem(TM) 1000, it was compounded with three carbon based nano-fillers. Multiwalled carbon nanotubes (MWCNT), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. Ribbons were extruded to form samples in which the nano-fillers were aligned. Samples were also fabricated by compression molding in which the nano-fillers were randomly oriented. The thermal properties were evaluated by DSC and TGA, and the mechanical properties of the aligned samples were determined by tensile testing. The degree of dispersion and alignment of the nanoparticles were investigated with high-resolution scanning electron microscopy. The thermal conductivity of the samples was measured in both the direction of alignment as well as perpendicular to that direction using the Nanoflash technique. The results of this study will be presented

    Thermal Conductivity of Ultem(TradeMark)/Carbon Nanofiller Blends

    Get PDF
    In an effort to improve polymer thermal conductivity (TC), Ultem(TradeMark) 1000 was compounded with nano-fillers of carbon allotropes. Ultem(TradeMark) 1000 was selected since it is both solution and melt processable. As-received and modified multiwalled carbon nanotubes (MWCNTs), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. MWCNTs were modified by functionalizing the surface through oxidization with concentrated acids, mixing with an alkyl bromide, and addition of alkyl and phosphorus compounds after initial treatment with n-butyl lithium. Functionalization was performed to improve the TC compatibility between the resin and MWCNTs. It was postulated that this may provide an improved interface between the MWCNT and the polymer which would result in enhanced TC. The nano-fillers were mixed with Ultem(TradeMark) 1000 in the melt and in solution at concentrations ranging from 5 to 40 wt%. Ribbons were extruded from the blends to form samples where the nano-fillers were aligned to some degree in the extrusion direction. Samples were also fabricated by compression molding resulting in random orientation of the nano-fillers. Thermal properties of the samples were evaluated by Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analyzer (TGA). Tensile properties of aligned samples were determined at room temperature. The specimens were cut from the ribbons in the extrusion direction; hence the nano-fillers are somewhat aligned in the direction of stress. Typically it was observed that melt mixed samples exhibited superior mechanical properties compared to solution mixed samples. As expected, increased filler loading led to increased modulus and decreased elongation with respect to the neat polymer. The degree of dispersion and alignment of the nano-fillers was determined by high-resolution scanning electron microscopy (HRSEM). HRSEM of the ribbons revealed that the MWCNTs and CNFs were predominantly aligned in the flow direction. The TC of the samples was measured using a Nanoflash(TradeMark) instrument. Since the MWCNTs and CNF are anisotropic, the TC was expected to be different in the longitudinal (parallel to the nanotube and fiber axis) and transverse (perpendicular to the nanotube and fiber axis) directions. The extruded ribbons provided samples for transverse TC measurements. However, to determine the TC in the longitudinal direction, the ribbons needed to be stacked and molded under 1.7 MPa and 270 C. Samples were then obtained by cutting the molded block with a diamond saw. The largest TC improvement was achieved for aligned samples when the measurement was performed in the direction of MWCNT and CNF alignment (i.e. longitudinal axis). Unaligned samples also showed a significant improvement in TC and may be potentially useful in applications when it is not possible to align the nano-filler. The results of this study will be presented

    Thermal Conductivity of Polyimide/Carbon Nanofiller Blends

    Get PDF
    In efforts to improve the thermal conductivity (TC) of Ultem(TM) 1000, it was compounded with three carbon based nano-fillers. Multiwalled carbon nanotubes (MWCNT), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. Ribbons were extruded to form samples in which the nano-fillers were aligned. Samples were also fabricated by compression molding in which the nano-fillers were randomly oriented. The thermal properties were evaluated by DSC and TGA, and the mechanical properties of the aligned samples were determined by tensile testing. The degree of dispersion and alignment of the nanoparticles were investigated with high-resolution scanning electron microscopy. The thermal conductivity of the samples was measured in both the direction of alignment as well as perpendicular to that direction using the Nanoflash technique. The results of this study will be presented

    Multifunctional, High-Temperature Nanocomposites

    Get PDF
    In experiments conducted as part of a continuing effort to incorporate multifunctionality into advanced composite materials, blends of multi-walled carbon nanotubes and a resin denoted gPETI-330 h (wherein gPETI h is an abbreviation for gphenylethynyl-terminated imide h) were prepared, characterized, and fabricated into moldings. PETI-330 was selected as the matrix resin in these experiments because of its low melt viscosity (2 hours at 280 C), and high temperature performance (>1,000 hours at 288 C). The multi-walled carbon nanotubes (MWCNTs), obtained from the University of Kentucky, were selected because of their electrical and thermal conductivity and their small diameters. The purpose of these experiments was to determine the combination of thermal, electrical, and mechanical properties achievable while still maintaining melt processability. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight-percent of MWCNTs by dry mixing of the constituents in a ball mill using zirconia beads. The resulting powders were characterized for degree of mixing and thermal and rheological properties. The neat resin was found to have melt viscosity between 5 and 10 poise. At 280 C and a fixed strain rate, the viscosity was found to increase with time. At this temperature, the phenylethynyl groups do not readily react and so no significant curing of the resin occurred. For MWCNT-filled samples, melt viscosity was reasonably steady at 280 C and was greater in samples containing greater proportions of MWCNTs. The melt viscosity for 20 weightpercent of MWCNTs was found to be .28,000 poise, which is lower than the initial estimated allowable maximum value of 60,000 poise for injection molding. Hence, MWCNT loadings of as much as 20 percent were deemed to be suitable compositions for scale-up. High-resolution scanning electron microscopy (HRSEM) showed the MWCNTs to be well dispersed in the polymer matrices, while high-resolution transmission electron microscopy shows splits in the walls of the MWCNTs but no catastrophic breakage of tubes. To further assess processing characteristics prior to scale-up, samples containing 10, 15, and 20 weight-percent of MWCNTs were processed through a laboratory melting extruder. HRSEM of the extruded fibers shows significant alignment of MWCNTs in the flow direction (see figure). For the samples containing 20 weight-percent of MWCNTs, difficulties were encountered during feeding, and the temperature of a rotor in the extruder rose to 245 C because of buildup of frictional heat; this indicates that materials of this type having MWCNT concentrations .20 weight- percent may not be melt-processable. On the basis of the results from the foregoing characterizations, samples containing 10, 15, and 20 weight-percent of MWCNTs were scaled up to masses of .300 g and used to make specimens having dimensions of 10.2 by 15.2 by 0.32 cm. These specimens were molded by (1) injecting the mixtures, at temperatures between 260 and 280 C, into a tool made of the low-thermal-expansion alloy InvarR and then (2) curing for 1 hour at 371 C. The tool was designed to impart shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction

    A genomic rearrangement resulting in a tandem duplication is associated with split hand-split foot malformation 3 (SHFM3) at 10q24

    Get PDF
    Split hand-split foot malformation (SHFM) is characterized by hypoplasia/aplasia of the central digits with fusion of the remaining digits. SHFM is usually an autosomal dominant condition and at least five loci have been identified in humans. Mutation analysis of the DACTYLIN gene, suspected to be responsible for SHFM3 in chromosome 10q24, was conducted in seven SHFM patients. We screened the coding region of DACTYLIN by single-strand conformation polymorphism and sequencing, and found no point mutations. However, Southern, pulsed field gel electrophoresis and dosage analyses demonstrated a complex rearrangement associated with a ∼0.5 Mb tandem duplication in all the patients. The distal and proximal breakpoints were within an 80 and 130 kb region, respectively. This duplicated region contained a disrupted extra copy of the DACTYLIN gene and the entire LBX1 and β-TRCP genes, known to be involved in limb development. The possible role of these genes in the SHFM3 phenotype is discusse

    A Conceptual Framework for Social, Behavioral, and Environmental Change through Stakeholder Engagement in Water Resource Management

    Get PDF
    Incorporating stakeholder engagement into environmental management may help in the pursuit of novel approaches for addressing complex water resource problems. However, evidence about how and under what circumstances stakeholder engagement enables desirable changes remains elusive. In this paper, we develop a conceptual framework for studying social and environmental changes possible through stakeholder engagement in water resource management, from inception to outcomes. We synthesize concepts from multiple literatures to provide a framework for tracing linkages from contextual conditions, through engagement process design features, to social learning, community capacity building, and behavioral change at individual, group, and group network levels, and ultimately to environmental change. We discuss opportunities to enhance the framework including through empirical applications to delineate scalar and temporal dimensions of social, behavioral, and environmental changes resulting from stakeholder engagement, and the potential for negative outcomes thus far glossed over in research on change through engagement
    • …
    corecore