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FOREWORD

The work described in this report was performed by the Bendix

Research Laboratories for the National Aeronautics and Space Administra-

tion under Contract NAS 3-6299. It was performed by the Propulsion

Controls Department of the Energy Conversion and Dynamic Controls Labo-

ratory. Mr. L. B. Taplin is Laboratory Manager, and Mr. J. G. Rivard

is the Department Head. Mr. J. T. Kasselmann was Responsible Engineer,

assisted by Mr. T. R. Delozler. The project was initiated on July 2,

1965, and was conducted under the program management of Mr. Ted Male of

the NASA-Lewis Research Center, Cleveland, Ohio.
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SUMMARY

Experimental and analytical studies were conducted to develop the

vortex amplifier as a hot gas valve for llquid rocket secondary injec-

tion _hrust vector control. This work included the staging of two vorCex

amplifiers in series to improve flow gain and the development of a new

vortex-doubie= =ype of gas generator designed for direct integration wi_h

=he two vortex amplifier stages. The program final objective was to

demons=rate a complete 2.0 lb/sec flow rate, staged, slngle-axls # secondary

inJec=ion thrust vector control system, under simulated rocket engine

operating conditions. A schematic of this system is shown in the Frontis-

piece. The media from both control and power stage gas genera=ors are

_he combustion produc_s of hydrogen and oxygen to yleld a bulk gas tem-

perature of 1500°F.

The program produced two major accomplishments. The staging of two

vortex amplifiers in series to increase flow gain was establlshed_ and a

flow gain of 200 was obcalned. The vortex-doublet gas generator was

successfully developed through a series of _ests that established Ignl-

tlon_ =hrot_llng_ shutdown and restarting with two sizes and two pressure
levels.

The program was divided into three tasks. Task 1 developed the

staging concep_ with a quar=er-scale vorCex amplifier using workhorse

hydrogen-oxygen gas generators. Task 2 developed the compact vortex-

double= hydrogen-oxygen gas generators, and Task 3 developed the full-

scale staged vor=ex amplifier which was integrated with the Task 2 gas

generators =o form a completed_ self-contalned SITVC system.

Task 1 was highly succe=sful because all of =he design obJec=ives

were met. A tes_ series was performed in which a coral flow gain exceeding

200 was establlshed. The outlet or secondary inJectan_ flow was modulated

over a range from 90% of total flow to complete shucoff while the total

flow was changed from 100% to 20% of maximum flow. Frequency response

tests were not performed. However, in the previous contract_ NAS 3-4198_

a bandpass _n excess of 85 hertz had been esCabllshed wi_h a slngle-stage

vortex amplifier of the same flow capaci=y.

During Task 2, a compact hydrogen-oxygen gas generator was developed

tha_ could easily be integrated wi=h a vortex amplifier. The development

effort centered on the propellant injection region.) Because of the ex-

tremely hot temperature_ (6000°F) at which hydrogen combines with oxygen,

it was necessary to design the injectors so that the propellants combined

in a free space region inside the vortex chamber away from chamber walls

and injectors. This problem was further aggravated by the need =o thro=tle

flow. A generator was developed =hat me= all of the requirements of _he

vortex amplifier in the secondary injection Chrus= vector control

appllca_ion.

Force in only one dlrec_ion

xl
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The Task 3 two-stage vortex amplifier was a full-scale model designed
from the quarter-scale amplifier developed in Task i. The Task 3 system M

was cold tested and the performance obtained was sllghtly better than

that obtained in Task 1. This was accomplished in the design hardware

without modification, indicating the validity of the scaling technique. I|

In initiating hot gas testing, several hardware problems arose from the U
necessity of conducting prellminary testing and adjustments, with hot

control gas flowing through the cold power stage vortex amplifier body. _|
The unit was very large, and the thermal transients caused stress cracking.

As a result, it was not possible to demonstrate complete hot gas perfor-

mance of the system. rl
However, correlation of Task 1 and Task 3 tests indicates that the [_

Task 3 system was capable of the specified hot gas performance. The

Task i tests established the almost 1 to 1 correlation between cold gas []

and hot gas performance. Therefore, the highly satisfactory cold gas I!
performance of Task 3 indicates that its hot gas performance would be

satisfactory also. Comparison of Task 1 and Task 3 cold gas tests estab-

lished the validity of the scaling technique. Therefore, the successful _I
Task 1 hot gas performance suggests satisfactory hot gas performance for t_

the Task 3 system. For both of these reasons -- scaling validity and corre-

lation of hot gas versus cold gas performance -- it is concluded that the
Task 3 vortex amplifier system would have performed well on hot gas if the

integrity of the hardware had been preserved.

The potential of the staged vortex amplifier with integral gas genera-

tots in the secondary injection thrust vector control application has U
been established. The performance of the vortex devices and the gas

generators met specification without exception. The methods of fabrication, |_
structural design and materials proved to be the limitation in performance
of this contract. Future work in this area should be in lightweight

insulated structures capable of withstanding the temperature shocks

encountered during interrupted metering of hot gas.

[!
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INTRODUCTION

A spacecraft or missile can be steered by deflectlng the rocket

engine thrust vector. Conventionally, this thrust deflectlon is accom-

pllshed by mounting the engine so that its angular position can be varied

whenever a course correction is required. This method requires the

complication and added weight of a glmbal mounting and an actuation

system. The large engine masses have slow dynamic response and require

powerful actuators. In vehicles with very large thrust engines, it is

customary to add auxiliary engines for the purpose of steering. This,

of course, also adds weight.

Secondary injection thrust -ector control (SITVC) is a method of

thrust deflection that saves the weight and complexity inherent in mechan-

ical thrust deflection systems. The engine is stationary and fluid Jets

deflect the rocket thrust gases to steer the vehicle. The fluid is

injected into the thrust nozzle downstream of the engine (hence the name

"seconda_T injection"). Response is fast, because the Jets can be turned

on and off rapldly_ as needed.

Almost any fluld might be used for secondary injection, but it is

most efficient to inject a hot gas; in fact, the gas might be bled from

the engine, itself, upstream of the nozzle. This gas is extremely hot,

and the valves that control the secondary injection must withstand tem-

peratures of 1500°F and higher. It is unlikely that ordinary electro-
mechanical valves could continue to function satisfactorily in this

environment of high temperature, shock and vibration. On the other hand,

vortex valves could be expected to operate with high reliability in this

environment because these fluidic devices have no moving parts.

To test the application of vortex valves for hot gas secondary

injection thrust vector control of liquid rocket engines, a development

program was undertaken in July 1964 by Bendix Research Laboratories for

NASA-Lewis Research Center under Contract NAS 3-4198. A vortex amplifier

having a flow capacity of 0.5 ib/sec was developed for use with the com-

bustion products of hydrogen and oxygen. The results of this program
were reported in NASA CR-54446.

As an outgrowth of the foregoing program, the development reported

herein was undertaken in July 1965 for NASA-Lewis Research Center under

Contract NAS 3-6299. The hydrogen-oxygen hot gases are controlled by a

hlgh-gain two-stage vortex amplifier, and the control signal input is

through an electropneumatlc pilot valve, which operates with cold

hydrogen gas. The staged vortex amplifier achieves high flow gain, so

that flow modulation by the electropneumatlc servovalve is very small

in comparison with the total hot gas flow modulatlon (full-off to full-on)

of the main stage vortex amplifier. With no moving parts exposed to the

hot gases (the electropneumatlc pilot valve handles only cold hydrogen),

the system offers the potential of high reliability for SITVC applications

in liquid rocket engines.

1
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The system constructed and tested in this program is a "single-axis"

system. That is, it includes the control valves and amplifier for a

single injection nozzle. Typically, a rocket vehicle would incorporate

three or four such systems spaced 120 degrees or 90 degrees apart around

the thrust nozzle to provide full pitch and yaw control.

The system described in this report is completely self-contalned,

incorporating one H/O gas generator for the control stage vortex valve

and another for the main stage vortex amplifier. The program, therefore,

includes development of the two-stage vortex amplifier, development of

the H/O gas generators (a unique design) and, finally, the integration

and testing of the complete system.

For the future, it is anticipated that a self-contained system such

as this could be applied to a rocket engine, drawing its fuel and oxygen

from the engine supply, or the main stage gas generator could be elimi-

nated and the hot gas flow for the injection nozzle could be bled from

the engine.

OBJECTIVE

The objective of this program was further development of the vortex

amplifier, including the evaluation of staging techniques to improve total

flow gain. In addition, a new vortex-doublet type of hydrogen-oxygen gas

generator was designed and developed for direct integration with both

stages of the vortex amplifier. This configuration has the advantage of

low L_. The final objective was to demonstrate a complete staged single-

axis, 2.0 ib/sec, secondary injection thrust vector control system, under

simulated operating conditions.

DESCRIPTION OF PROGRAM

The program was divided into three separate tasks to accomplish

these objectives.

Task I

In Task i, the hot gas vortex amplifier staging concept was evalu-

_I ated and tested. The previous project had resulted in the demonstration
of a vortex amplifier with good overall performance, with an output flow

gain in excess of 30 being xealized from a single vortex amplifier, using

a bias flow technique. The purpose of Task 1 was to evaluate two vortex

amplifier stages in series, to produce an output flow gain exceeding

200. The 0.5 ib/sec vortex amplifier developed during the previous con-

tract was used as the power stage for Task I. A smaller vortex unit was

fabricated to serve as the control stage of the amplifier and was inte-

grated with the power stage to form a two-stage amplifier that would

demonstrate the desired gain. The control stage provided the initial

amplification, and the power stage provided the final amplification.

Both cold gas and hot gas tests were performed (with conventional H/0

: 2
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gas generators being used to provide the hot gas). The test results I:ii_
of Task i produced the design data required for building the high flow,

2.0 ib/sec SlTVC system in Task 3.

Task 2

In Task 2, a vortex-doublet hydrogen-oxygen gas generator was

developed to replace the previous gas generator. The vortex-doublet type

of gas generator offers potential advantages in size, reliability and

dynamic performance.

The previous gas generator configuration (as used in Task i and in

the earlier contract) was a cylinder having a length greater than its

diameter. In this type of generator, hydrogen is injected tangentially

at the outer wall to provide a swirling layer of gas. Oxygen is injected

axially at one end, and the mixture is spark-lgnited. Combustion occurs

as the two gases move through the chamber toward the exit at the other

end. This configuration requires an unreasonably long chamber.

The new combu_cor configuration, developed by Bendix Research Labo-

ratories, has a flat pancake-type combustion chamber, wlth both propellants

in_ected at the outer radius. Oxygen Is Injected radially and hydrogen

Is injected tangentially at the same location (doublet Injection). The

mixed hydrogen and oxygen are spark-ignlted and combustion occurs as the

gases spiral toward the center of the combustion chamber in a vortex flow

field. This unique configuration confines the combustion zone to the
center of the chamber and reduces heat transfer to the outer chamber

wall. It requires a reduced chamber volume (low L*), which minimizes

package size and improves dynamic performance.

This combustor was developed in two sizes in Task 2 so that the

two generators could be designed Intergrally wlth the two vortex amplifier

stages In Task 3. Initially, a low-flow unlt was developed. Its purpose

was twofold: first, it established the feaslbillty of the vortex-doublet

design; second, it was used to supply gas to the control stage of the

SITVC system that was deslgned and built during Task 3. This generator

had a flow capacity of approxlmately 0.35 lb/sec, with a pressure of

800 psig. With feasibillty established, a full-scale unlt capable of

delivering a minimumhot gas flow of 2.0 lb/sec , with a pressure of

range of 5 to 1 was built and tested and later was applied to the power

stage ampllfter in Task 3. This gas generator was required to have good

combustion stability and accurate temperature control.

Task 3

In Task 3, a new, larger two-stage vortex amplifier was designed

and fabricated, based on the results of Task 1, and a complete demonstra-

tion unit, simulating a slngle-axls secondary injection thrust vector

control system, was assembled and tested. The power stage had a flow "
rate of 2.0 lb/sec and was buil_ as an integral assembly with the larger

of the two hydrogen-oxygen gas generators that had been developed in L

3
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Task 2. The control stage was built as an integral assembly with the [_
smaller l!/O gas generator that had been developed in Task 2. The two- _J
stage vortex amplifier was controlled by using cold gas supplied from

an electropneumatic pilot stage. _

The output of the power stage amplifier was loaded with a flxed-area

orifice simulating the secondary injection nozzle. Exhaust flow was

vented through a loading orifice, simulating a large-expansion, low [1

pressure nozzle capable of recovering available thrust. A conceptual lJ
design of this integrated system is shown in Figure i.

The goal of Task 3 was to achieve an integrated design with opti- ||

mlzed performance. The performance goals were: total flow gain of 200; U
power stage flow recovery of 90%; power stage flow turndown of 5:1; output

flow modulation range varying from maximum recovered flow to zero flow.

_ot.__oa__ _ou_o,_._o,uooo__os,on_°o___ _o_o_ I]
extensive preliminary ignition tests and hot gas tests had deteriorated
the hardware to such an extent that dynamic response tests were not

performed. [!

SECOHDARY PIt01 $IA6[

\ _\\\\\_ _.mCmCAt
\ \ . iNPUTSIOHAL

FLOW1
HYOliOS"EN__ - /__mil_,,, o,,., [i

EXHAUST _ [1

POWERSTASE (HIGHfLOW) "
I]

Figure 1 - Two-Stage Vortex Amplifier for SITVC [J

[]

[I

H
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DEVELOPMENT OF STAGED VORTEX AMPLIFIER

(TASK 1)

1 The objectives of Task i were (i) to evaluate the concept of

obtaining high flow gain by staging two vortex amplifiers in series, and

(2) to develop normalized performance characteristics and design param-

eters that would be used in the design of the full-scale staged vortex

amplifier in Task 3.

In a vortex amplifier, tangential control flow creates a swirling

action in a vortex chamber that restricts supply flow. By varying the

control flow input, total flow through the device can be modulated from

maximum (full supply flow, no control flow) to a minimum flow (supply

flow shutoff, only control flow passing through the device). The ratio
of maximum to minimum flow is called the "turndown ratio." When two

amplifiers are staged, the output flow of one (the control stage) becomes

the control flow input of the second (the power stage), and the overall

flow gain is the product of the gains of both amplifiers within their

operating range.

To enable output flow to be reduced to zero, a tubular receiver is

positioned facing the outlet orifice of the power stage vortex chamber.

Under high flow conditions (i.e., zero control flow), most of the gas

exiting from the chamber enters the receiver and flows to the load. Under

minimum flow conditions, the swirling gases exit from the chamber in the

form of a hollow cone and bypass the receiver so that no gas flows to

the load. In tests, the load is simulated by a simple orifice.

The staged vortex amplifier system developed in Task 1 included:

the power stage amplifier, which was sized for the specified capacity of

0.5 ib/sec flow; the smaller control stage amplifier which was sized to

provide the necessary control flow the the power stage; and an electro-

pneumatic pilot valve, which supplied a control flow input signal to the

control stage.

PERFORMANCE REQUIREMENTS

The required vortex amplifier performance is plotted in normalized

form in Figure 2. The curves represent overall performance of the staged

vortex amplifier. The abscissa is the ratio of the control stage controlp

pressure (pilot pressure, Pc2) to the power stage supply pressure (Psi).

This parameter (Pc2/Psl) was chosen because this pressure ratio is a
normalized expression of the input to the vortex amplifler from a signal
source.

The ordinate is normalized weight flow in which unity represents

the maximum total flow through the power stage. By including total,

receiver, control and pilot flow curves, the chart defines performance

completely. Exhaust flow can be computed, if desired, by subtracting
receiver flow from total flow.

5
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Figure 2 - Staged Vortex Amplifier Target Performance _I

The operating range extends from the bias point to the final point _--I
(receiver flow shutoff). All curves were extended beyond this region In U
order to completely define full-range performance. The curves were based
on a design specification that the control stage supply pressure (Ps2) [I
is two times the power stage supply pressure (Psl)" The operating region
is bounded by normalized weight flows of 0 to 1 and by overall control
pressure ratios of 2.2 and 2.5. The maximum system pressure Is thus

defined at 2.5 times the powe_ stage supply pressure, lJ

Flow Gain

Both stages are biased to operate in the hlgh-galn part of the /I
input-output curve. That is_ control flow is never reduced to zero In
either stage, so that the operating range is between full turndown and
some point less than full flow. Without biasing, the.maxlmum flow 8aln _-]
of each stage is about seven, since _he maximum control flow Is about [!
one-seventh of the total flow of each stage. With biasing, the control
flow range is a much smaller fraction of the total flow range. The galn |]
of the power stage then is approximately 20 and the gain of the control

6 fl
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i
stage is approximately 10, so that total flow galn is 200. The difference

J in the gains of these two stages is due primarily to the difference in
| loadlng of each stage. The total flow gain is defined as the receiver

or output flow at the bias _olnt divided by the total change In pilot

I flow (control stage control flow) to achieve complete flow modulatlon.
I

Because the total flow is slightly turned down at the blas point,
the power stage vortex amplifier must be slightly oversized in order to
pass the specified design flow. For the control stage_ the amount of -

_ oversize is determined by the necessity of making the high-galn region
of the control stage match the operating region of the power stage.

Receiver Flow Recovery

The receiver flow recovery ratio at the bias point is specified
as 90% and is defined as the receiver flow divided by the total flow.
This parameter is a measure of the ability of the receiver to collect the
unswlrled gas issuing from the vortex chamber. Complete 100_ recovery
is dlfficult because of the large axlal spacing between the chamber out-
let orifice and the receiver entrance, which is required to assure com-
plete exhausting of the swirled gases at the zero receiver flow condition.

Receiver Pressure Recovery

Recovered pressure in the receiver is a function of the restriction
caused by the secondary injection nozzle. The thrust nozzle pressure is
near vacuum at the point of injection. Thus, a low maximum upstream
injection pressure can be employed. The pressure is dictated primarily
by the resultlng size of SITVC components. Maximum receiver pressure is
specified as 25_ of the supply pressure. For test purposes, a fixed
orifice simulated the restriction of the secondary injection nozzle.

Receiver Flow Shutoff

The output flow is required to decrease to zero with a pilot
pressure-to-power stage supply pressure ratio of 2.2. Flow shutoff
corresponds to the condition of the zero thrust vector and wlll be the
long-term operating point in _ normal rocket engine duty cycle. The
output flow must modulate smoothly, and wlth reproduclble linearlty,
from the condition of approximately 90% flow recovery at the bias point
to complete flow shutdown.

Total Flow Turndown

In a normal rocket engine application, the SITVC system would
operate most of the time with injection flow at zero while the residual
flow is exhausted to an auxiliary thrust nozzle. Since thls nozzle is
less efficient than the maln engine, it is desirable that the total flow
be reduced to about 20X of maxlmumwhile In this operating condition.
Therefore, a total flow turndown of 5:1 in the power stage is required.
The turndown or throttllng capability enables the vortex amplifier to
conserve propellant. At full turndown, the flow is essentlally all
control flow.

t
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SUMMARYOF RESULTS

A complete series of cold and hot gas tests resulted in the develop-
ment of a 0.5 lb/sec staged hot gas system and in the demonstration of
all static performance goals. The first 12 tests were accomplished with
cold gas (N2) and established the system's parameters. Development of
a receiver was coupled with a controt stage sizing program to optimize
the system performance. The final system configuration, which met all
requirements with cold gas, was demonstrated to have the same performance
with hot gas.

The system was capable of modulatingrecelver flow from more than
90% flow recovery to complete shutoff, using either cold or hot gas.
Flow gains in excess of 200 also were accomplished, both with cold gas
and with hot gas. The final Task 1 system configuration dlct_ted the
Task 3 (2.0 Ib/sec) hot gas system design.

A complete summary of the Task 1 tests is shown in Table 1. This
t_ble outlines in detail the Task 1 progress and sunnnarizes the performance.

DESIGN OF FINAL CONFIGURATION

Power Stage - VA2

The power stage, VA2 (formerly designated the Phase 1 vortex ampli-
fier in the previous test program, NAg 3-4198), which was used for all
Task 1 tests, was modified at the start of the staged testing to improve
the performance. The area of the annular inlet, located between the
button periphery and the chamber cylindrical wall, was decreased from
4 times the vortex chamber outlet area (Aol) to 3 times Aol , and the
numbez of control ports was decreased from 12 to 6 while maintaining the
same total control flow area. Throughout the experimental development,
the only changes to the power stage were various receiver diameters and
receiver spacings to improve the system performance and to accomplit_h
complete shutoff of the receiver flow. The final power stage design
parameters are sumnarized in Table 2, and the power stage amplifier is
shown in Figures 3, 4 and 5.

Table 2 - Task I Power Stage (VA2) Final Design Parameters

Chamber Outlet Diameter Do1 - 0.695 in.

Chamber Diameter (approx. 6 Do1) D1 - 4.00 in.

Chamber Length (Dol/3) LI " 0.232 in.

Button Diameter DBI - 3.815 in.

Control Port Diameter (6 Ports) Dcl = _.077 in.

Receiver Diameter (Drl = 1.9 Dol) Dr = 1.320 in.

Receiver Spacing (Xr = Dol) XT - 0.689 in.
• i i m 1

10 I

i

1968004293-022



,,-. -,:,
,'4",

__, -.

_,:_'_-CONTROL RECEIVER
;,i_i: ,:: F LOW F LOW

:" _ INLET OUTLET

>'-', 1§282

Figure 3 - Phase i Vortex Amplifier (Final Design)

Figure 4 - Phase i Vortex Amplifier - Disassembled
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Control Stage--VA4M2

The flnal control stage design called for an increase in flow

capacity over the design orlglnally conceived at the beginning of Task 1.

The increase in the maximum flow of the control stage allowed the control

stage to operate in a partial turndown condition at receiver shutoff,

thus 8hlft±ng the modulating range of the control stage to a hlgh-galn

region. This resulted in an increase in the overall gain of the system.

The flnal control stage was designed for a total flow of 0.420

lb/sec (N2) at a temperature of 500°R and a supply pressure of 800 pslg.
This maximum flow is delivered to the power stage at a pressure of 730

psig. The control stage vortex chamber outlet orifice size sets the

capacity of the vortex smplifiez. The orifice size is calculated as
follows:

_cl_-

Ao2-- f /PclI (1)
cd c_Ps2l_Ps2]

where

Ao2 = outlet orifice area

Wcl _ max control flow - 0.420 lb/sec (N2)

T = gas temperature - 500°R

C2 - constant - 0.523 _/sec

Ps2 = control stage supply pressure - 800 pslg

Pcl " power stage control pressure - 730 psla

l_Ps2] = sonic flow function

Cd - discharge coefficient - assumed 0.7

From equation (1) the followlng dimensions are establlshed:

Ao2 - 0.0547 in2

Do2 - 0.264 in. (vortex chamber outlet)

13
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The chamber diameter was limited to approximately six times the

chamber outlet diameter. _

D2 • 6 Do2 (2) _]

A diameter of D2 = 1.625 inches was used, which provided a diameter II
ratio of 6.18. The chamber length was established as one-thlrd of the lJ

outlet diameter. Thus,

li
Do2

L2 = T = 0.088 in. []

U

The button dlameter was slzed _o provlde an annular inlet area [Iaround the button equal to 3 times the outlet area• In the design of

the previous vortex amplifiers (NASA Contract NAS 3-4198) an area ratio

of 4 to I was used. With this larger area, a portion of the supply flow [I

apparently was unaffected by the influxing tangential control momentum, |1
and this reduced the efficiency of the vortex flow field. The 3-to-i

LJ

area ratio was shown to increase the performance of the vortex amplifier

i-Iin the very first cold gas staging test•

The annular area is determined by the button diameter which is

calculated as follows: [}

2 12Ao2

DB2 = D22 _ (3) []

The button diameter was calculated to be [)

DB2 = 1"558 in" [!

Two important ratlos evolved from the deslgn of the control ports. IllThe first is the unbiased flow gain which defines the control weight

flow, and the second is the maximum control/supply pressure ratio. These

ratios are: []

_c2

i]
,4 H

i
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Pc2
--= 1.3 (5)
Ps2

With four control ports, the weight flow through each is:

Wcl
_'c2= "_ (6)

Using the orifice weight flow equation, the area of a single control port
is defined as

Wcl

Ac2 = f iPs'2'i (7)

32 Cd C2 Pc2 l_Pc--_I

where

T = 500°R (approximate temperature of nitrogen gas)

Cd = 0.7

C2 = 0.523 FR/sec (N2)

Pc2 = 1.3(815) = 1060 psla

Wcl = 0.420 lb/sec

I8151
l_l = 0.860

Solving the above equation_ the area of a single control port was
evaluated to be:

Ac2 = 7.5 x 10-4 in2

and the control port diameter is:

Dc2 = 0.031 in.

15
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The four control ports are equally spaced about the chamber circumference. [_
Their centerlines are tangent to the chamber outer diameter and lie in b
a plane common with the face of the button.

Table 3 is a summary of the control stage final design parameters. II

_he control stage vortex amplifier final configuration (VA4M2) is [•

shown in Figures 6 and 7 after completion of the test program.

Table 3 - Task i Control Stage (VA4M2)

Final Design Parameters L J

Chamber Outlet Diameter Do2 = 0.264 in.

Chamber Diameter (approx. 6 Do2) D2 ffi 1.625 in. [-:

Button Diameter DB2 _ 1.558 in.

Chamber Length (Do2/3) L2 ffi0.088 in.

Diameter (4 Ports) Dc2 = 0.031 in. lJ
Control Port

When two vortex amplifiers are staged in a series combination for

maxlmum performance, it is deslrable that the two vortex amplifiers I1operate simultaneously in their hlgh-galn regions. Otherwise the full

gain potential of connecting the amplifiers in series would not be

achieved. This high-galn range must also coincide with the most effec-

tive receiver flow range, which is from complete receiver flow shutoff li

to at least 90% full flow recovery.
[J

The high-gain matching of the two stages is accomplished by over-

sizing the control stage so that it can deliver the necessary control I
flow to completely turn down the power stage while the control stage

itself is slightly turned down. The power stage, of course, also modu-

lates within its high-gain region because of the biasing technique in I
which, even at maximum output, the power stage is subjected to some I
resldual flow.

I.J
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Figure 6 - Task I Hot Gas Control Stage VA4M2

Figure 7 - Control Stage Vortex A_plifier VA4M2 Shown Disassembled
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These staging concepts were evaluated through both cold and hot

using the same facility for all tests. The Task 1 test Ill
gas tests,

facility was designed for 0.5 ib/sec hot gas flow tests, with provision i

for preliminary cold gas tests. The facility provided three cold gas

sources which could be regulated at various pressure levels. It also _I

provided two hydrogen-oxygen regulatory circuits capable of supplying

H2-02 at 0.80/F ratio to two gas generators which produced the 1500°F

hot gas for the system. !1
11

The Task i hot gas test schematic is shown in Figure 8. The gas _,

generator control system is shown in Figure 9 and a photograph of the

hot gas test arrangement is shown in Figure i0. II

The instrumentation, which consisted of two Sanborn recorders and Ii
a firing panel D was located inside the test building. Sixteen channels

of data were used to measure gage and differential pressures and various II

temperatures. From this information, significant flows, pressures and I

temperatures throughout the system were measured or computed.

The general test procedure for both cold and hot tests was to Ii

initially set up 800 psig supply pressure in the control stage and 400 [ 1

psig supply pressure in the power stage. The pilot pressure (i.e., the

control pressure to the control stage) would then be varied from 1200 to |I

800 psig, thus modulating the system through a flow range from the bias [I
point to full turndown. This procedure provided sufficient data for

plotting the static performance nondlmenslonalized curves. _I

Control 'Sta_e Development

There were three control stages tested in Task i. The first con- [I

trol stage, VA3M1 (Figure ii), which had been designated Breadborad No. 2

in the previous test program, was modified and employed in the initial

staged cold gas test. This initial test revealed the necessity of

increasing the control stage maximum flow. Even though the maximum flow 'II
was capable of turning off the power stage supply flow, the galn associated I.!

with the operating range was extremely low because of the low-galn

characteristic of the control stage at maximum flow. This increase in II

capacity was incorporated into the first hot gas control stage, VA4MI,

simply by increasing the outlet orifice diameter. Thls method of enlarge-

ment destroyed the original design parameter (D/Do) of VA4 to the extent [I
that the vortex amplifier exl:ibited erratic performance, which was il
attributed to an unstable vortex chamber. The instability was detrimental

to the staging technique, since the system's performance was not repeatable.

In the final control stage design, a new control stage, designated VA4M2, I!
was manufactured which restored the diameter ratio of 6 to 1 and increased Il

the flow capacity. Thls increase shifted the modulating range of the

control stage to its high-gain region. [t

!I

,8 Ii
i
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INSTRUMENTATION

Figure i0 - Task i Test Stand (Setup for Hot Tests)

.CONTROL PORT !

BU TTOtl

Figure 11 - Control Stage Vortex Amplifier VA3MI
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Receiver Development

The position and diameter of the receiver determines the output
performance of the staged system. For 90Z flow recovery at the bias
point and complete receiver shutoff, the receiverts diameter and position
must be selected to allow the exiting gas of the vortex to mis_ the
receiver at turndown; yet, at full flow, the receiver must catch a
maximum amount of the gas. The receiver design which met these require-
ments (for both Task 1 and Task 3) was determined from an experimental
analysis that was accomplished during the Task 1 testing. Complete
details of this experimental analysis can be found in Appendix A.
Essentially, the boundaries of the exiting gas were analyzed by a series
of short tests, utilizing a series of receivers of different diameters
so that the Dr/D o ratio varied from 1.1 to 1.3. The various receivers
were located at different positions and the max#_um recovery and complete
turndown recovery at each position were recorded. By establishing the
points at which different size receivers would achieve either 100Z flow
recovery at maximum flow or zero recovery at full turndown, and plotting
these points, a boundary mapping of the exiting gas was constructed,
revealing a region in which the receiver theoretically could achieve
both a maximum recovery of 100Z and complete shutoff. The theoretical
minimum receiver diameter was 1.7 Do at a distance of 0.86 Do. However,
in the initial cold gas tests of Task 1, the diameter of the largest
receiver used was 1.3 Do .

Tests with larger receivers verified the experimental analysis.
For the first time in the test program, both complete receiver shutoff
at turndown and ove_ 90Z recovery at full flow were obtained. Overall
gain for the syotem was 260 to 1. These tests finalized the receiver
design at a receiver diameter of 1.9 Do and at an axial position of
1.0 Do from the outlet orifice of the power stage vortex chamber. The
hot gas tests were then initiated to evaluate the design in a hot gas
environment.

The seven hot gas tests in Task 1 completely verified the receiver
design. These tests confirmed that the receiver design is one o_ the
major factors in maximizing a staged vortex amplifier SITVC System. I_
the receiver diameter _s correctly sized so that for a range of axiel
receiver locations the re_c_,,er remains in the theoretical region of
maximum recovery and complete shutoff, the performance of the syste_ is
altered simply by moving the receiver. Figure 12 illustrates the graphical
definitions of the system's performance for various receive_ _ positions.
The conclusions from this illustration are shown in Table 4.

Final Test Performance

The Task 1 test program was concluded with Hot Test No. 19. This
test resulted in performance which met or surpassed specifications. A
sufficient number of data points were obtained to firmly establish the
system's performance. The data correlated well with the data from p:e-
vious hot gas tests.

22
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Table 4 - Performance Trends Related to Receiver Position [_j
(.}j

Power Stage Control Stage

Jlt.

i.I
•,4 1
o 1

<0 [1Xr o1

X -D

ilr o1

X >D
r o1

I + Increase in Performance
Decrease in Performance

-- Equal to Optimum Performance ! l

l.I
Table 5 - Test No. 19 Performance Summary

........ il
Test Data Specification

,Bias Point (Pc2/Pa:) 2.510 -- II

Final Point (Pc2/Psl) 2.295 --

Flow Recovery at Bias Point 91.9% 90% Jl
IITotal Flow Turndown 6.13 to I 5 to I _

Pressure Recovery 27.4% 25% |

Receiver Flow Shutoff 0% 0% I,

Total Gain 200 200

" H

[I
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The performance obtained in thls test is compared wlth the specified

performance in Table 5. Figure 13 shows the performance plotted on the

conventional format, and Figure 14 shows the same performance plotted on
an input-output basis in the secondary injection thrust vector control
application.

A significant point of this test was that flve full-flow modulations

were accomplished. The gas generator supplying the power stage supply _

flow was extinguished and automatically reignlted wlth each modulation. _

Maximum supply gas temperatures were 1550°F and 1250°F from the power [....

and control stage gas generators, respectively. The test was operated _

for a period of 130 seconds and was manually shut down. The total flow

turndown, including the ignition bleed flow between gas generators, was

6.13 to i, which exceeds the specified requirement of 5.0 to I. The
ignition bleed flow Is the difference between total flow and control flow

at pressure ratios lower than Pc2/Psl = 2.3 (Figure 13).

The initial receiver flow recovery was 94.5% at a total flow of

0.502 ib/sec, which slightly exceeds the specification flow of 0.5 ib/sec.

A flow recovery of 91.5% was accomplished at the blas point.

An overall system flow gain of 220 was demonstrated. Thls gain is

the product of a power stage galn of 14.4 and a control stage gain of

15.3. Receiver flow was modulated from 0.45 ib/sec to zero, while the

modulation range of the pilot flow cold hydrogen gas was 0.002 ib/sec.

Thus, the two-stage vortex amplifier equaled or exceeded the speci-

fied performance in overall flow gain, flow turndown, flow recovery,
pressure recovery and flow shutoff.

Although the best galn demonstrated in a hot gas test was 220,

while the best gain in a cold gas test was 260, the hot gas performance
of the amplifiers actually was better. This conclusion arises from the

fact that in the cold tests the same gas was used throughout the system,

whereas in the hot tests cold hydrogen pilot flow controlled the hot gas

supply. If hot gas could have been used as pilot flow also, the gain

would have been about 50% greater. The reason for this Is that, for a

given weight flow rate, the denser cold gas has a lower velocity through

tile control port and therefore a lower momentum; to achieve the same

momentum, its weight flow rate must be higher.

Correspondingly, the pilot flow momentum change required to fully

modulate the staged amplifier represents a higher input flow rate change

with cold pilot H2 gas than it would with hot pilot gas. Since galn is

the ratio of output flow change to input flow change, the higher input flow

rate change of the cold pilot gas reduces the galn in proportion.

A significant result of the amplifier tests has been the demonstration

that cold gas performance corresponds very well wlth hot gas performance,

both for individual amplifiers and for the staged system. Thus develop-

ment programs can be expedited by using cold gas testing to optimize

components or systems, and reserving hot gas testing for final system
demonstration or for tests related to thermal effects and hardware

endurance.
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DEVELOPMENT OF VORTEX-DOUBLET GAS GENERATORS

(TASK 2)

The objective of Task 2 was to develop two compact hydrogen-oxygen

gas generators that could be integrated with the control stage and power

stage vortex amplifiers in the full-scale SITVC system in Task 3. It was

desired that these gas generators be small and have low L* (ratio of com-

bustion volume to outlet area) to save space and weight and to improve

response. Therefore, a vortex-doublet type of generator was developed.

In this type of combustor, the fuel and oxidizer are injected together

in a doublet and burn while flowing in a vortex toward the outlet at the

center. The technique permits a long burn path in a small space and thus

achieves efficient combustion in a compact configuration. The vortex-

doublet type of combustor had been used successfully by Bendix with

hypergollc blpropellants in small rocket engines. The task of the current

program was to develop the concept for hydrogen and oxygen with spark

ignition.

SUMMARY OF RESULTS

Task 2 resulted in the successful development of two hydrogen-

oxygen gas generators of vortex-doublet design. These generators are

designated HOGG3% and HOGG4 and were designed to provide the hot gas

supply flow to the Task 3 control and power stages, respectively. Their

principal performance parameters are summarized in Table 6.

Table 6 - Gas Generator Performance Parameters

Hot Gas{ Hot Gas

Output O/F Output Gas

Weight Flow Ratio Pressure Temp.

pps psig

HOGG3 0.33 O.8 800 1500

HOGG4 2.00 O.8 400 1500

Most of the effort in Task 2 was in the develorment of the HOGG3 gas

generator. HOGG4 was designed in this Task but was test evaluated in

Task 3. More than eleven minutes of hot testing was accomplished on

HOGG3 in seventeen individual tests during Task 2. Additional test time

was accumulated in the Task 3 test program.

A summary of all of the Task 2 tests is shown in Table 7. The test

series ended with test No. 3G-FB, in which three complete shutoffs and

restarts were accomp!ish_d. Combustion was maintained through a turndown

of 6:1. Modulation and shutoff of the gas generator was accomplished by

throttling the output with VAS, the vortex amplifier that was used as the

%Hydrogen-Oxygen Gas Generator

27
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Table 7 - Task 2 Test Summary i_]
L.J

Config- Chamber Flow Range Max. Duration
Test Date uration Pressure (Max. flow/ Temp. Results

No. ' psia Ivfin. flow) "F sec. [,
'' _ J

3G-IA 11-15-65 I Approx. 800 I 1280 19 Damaged housing and O2 injector.

3G-IB 2-4-66 II Approx. 800 I 660 28 Damaged housing and 02 injector.

3G-IC 3-2-66 III 565 I 1460 17 No damage to housing. Oxygen

injectors slightly eroded.

3G-2A 3-4-66 IIl 715 I 760 60 No damage to housing. Oxygen

injectors slightly eroded.

3G-ID 3-14-66 III 775 1 775 26 No damage to housing. Quartz

shields did not protect stainless

steel oxygen injectors.

3G-IE 3-15-t:6 llI 825 I 920 33 No damage to housing. Stainless _ I
s_eel oxygen injector slightly eroded. _ !

3G-IF 3-16=66 III 835 I 1540 25 No damage to housing. S.S. OZ injec-
tors from test 3G-IE reus,.d. No _
additional erosion.

30-3A 3-18-66 III 815 1.9 1500 34 No damage to housi-g. S.S. O2 tubes
from 3G-IE reused. No additional

tordamag_tubetOeroded.Oneinjector. Other injec- I I| _

3G-4A 3-28-66 flI 815 2.I 2280 37 No damag( to housing. One S.S.O 2
tube completely eroded_ one slightly

damaged" II3G-4B 3-30-66 Ill 845 2.2 2300 37 No damage to housing. Oz Injec-
IV tots - one copper, one S.S. - no

damage.

3G-4C 3-31-66 III 815 2.6 2400 _8 Nodamagetohou_ing. SsmeO2inJec- ' I

IV tore (3G-4B). No damage. _J._
III 2.5

3G-4D 4-1-66 815 1850 93 No damage to housing or injectors.

IV approx. Dummy vortex valve destroyed by

high temp. gas. Oscillatory condition 1 1in propellant feed system due to dam-

aged H Z regulator. Drastic periodic
shifts in O/F ratio.

3G-213 6-10-66 Ill 715 I 1340 67 Slight danage to housing caused by I I

IV freeS z stream below chamber sur- I

face. Frees Z stream a direct re-
sult of pretest damage to tip of S.S.

Ozinjector.

3G-SA 6-27-66 Ill 799 4.3 1520 72 No damage to housing. 02 injectors -
both copper - no damage. Complete

3G-6 This Flow Range was evaluated during Tests 3G-7A and 3G-TB
shutoff was accomplished.

800 Complete 2000 54 No damage to housing or inj,_ctors.

3G-TA 6-27-66 llI approx. Shutoff 3 complete modulations to shutoff

were accomplished,

C°mplete 1700 70 No damage to housing or injectors, li
3G-TB 6-28-66 III 835 Shutoff 3 complete modulations to shutoff

were accomplished. Combustion _

maintained through 6-to-I flow range.

Test Series Concluded

eSce Task 2 Testln8 Section for explanstlo, of confisuratlons. '"
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control stage in Task 3. Nitrogen gas was used as the control flow to
VA5.

Gas generator development was started in the preceding contract,

NAS 3-4198, with the design end development of a long cylindrical configu-

ration. The hydrogen was tangentially injected at the outer wall at the

end of the cylinder to provide a swirling layer of fuel gas adjacent to

the walls. The oxygen was injected axially at the same end of the cylinder,

and the mixture was ignited by a spark plug. As the swir,ling gases moved

down the cylinder they combined and burned before reaching the outlet hole.

This design, though f,mctionally satisfactory, was excessively large in
size.

The vortex-doublet design developed at the B_ndix Research Labora-

tories employs a flat pancake-type combustion chamber so that the L* is

very small. Both propellants are introduced at the cuter radius, with

hydrogen injected tangentially end oxyger injected radially. As in the

previous design, the walls of the combusLP)n chamber" are protected against

direct contact with the oxygen by a lay: of hydrogen. Ignition is accom-

plished by a spark plug in an oxygen-ri. , low :-ressure starting gas mixture.

Combustion occurs as the two propellant gase._ combine in a swirling mix-

ture end spiral to the outlet hole in the center c_ _:_ combustion chamber.

This pancake configuration is suitable for intugration with vortex

amplifiers in general because its major diameter is appro_imately the

same as the major diameter of the vortex amplifier which it supplies.
The addition of this type of gas generator to a vortex amplifier increases

the package length somewhat. But this added length is not very great

because the vortex amplifier internal volume supplements the gas generator

volume, thus permitting the generator combustion chamber to be very short.

The volume of the combustion chamber, itself, is only a portion of the

volume that is normally termed L* in a combustor. The supply and vortex

chamber volume of the vortex amplifier is added to the combustion cham-

ber volume because the flow-restricting orifice for the system is the vor-

tex amplifier outlet hole.

GAS GENERATOR DESIGN

The two hydrogen-oxygen gas generators, HOGG3 and HOGG4, were de-

signed to be integrated with the two-stage vortex amplifier which was

developed in Task 3.

Flows and Pressures

The control stage gas generator, designated as HOGG3, was designed

to deliver 0.3 ib/sec of hot gas at a temperature of 1500°F and a pressure

of 800 psig. The power stage gas generator, designated as HOGG4, was

designed to deliver 2.0 lb/sec of hot gas at a temperature of 1500_F and

a pressure of 400 psig.

Figure 15 shows a plot of the adiabatic bulk temperatures resulting
from the reaction of oxygen with an excess of hydrogen for various reactant
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Figure 15 - Adiabatic Bulk Temperature as a Function of OIF Ratio

temperatures and oxidizer-to-fuel weight ratios (O/F). From this figure, ]i!
the theoretical O/F ratio corresponding to a hot gas temperature of 1500°F

and a reactant temperature of 77°F is 0.8. The actual O/F ratio required

to obtain a hot gas te,nperature of 1500°F is somewhat higher because of I _
heat losses from the system and must be determined experimentally. How- _ J

ever, the theoretical O/F ratio is sufficiently close to the actual value

_o__u,_,_o,or_s,_o_ou_,_,on_ [IFor an O/F ratio of 0.8, the oxygen flow into the gas generator

was computed from:

[I
0.8&

& ,, s

so 1.8 (1) if

and the hydrogen flow was computed from: Iii
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where

_ - hot gas flow into vortex amplifier supply - Ib/secs

- oxygen flow into gas generator - ib/secso

Wsh " hydrogen flow into gas generator - ib/sec

The hydrogen and oxygen were stored in gaseous form in pressure

bottles. As the reactants were consumed, the storage pressure decayed

from its inltial value and eventually reached a value which was too low

to operate the system. One obvious limitation on the minimum storage

pressure was the maximum value of the control pressure for control stage

vortex amplifier VAS, which was estimated as 1200 pslg. It was assumed

that the minimum gas storage pressure was 1200 pslg; then the minimum

pressure drop between HOGG3, which had a chamber pressure of 800 pslg,

and the reactant control valve inlets was 400 psid. Half of this pres-

sure drop was allowed for the control valve and half for the injectors.

Thus, the maximum inlet pressure drop for HOGG3 was 200 pslds which

was approximately the value used with HOGGI in Task i. Since HOGG4

had a chamber pressure of 400 pslg, the mlnlmumpressure drop between
it and its reactant control valve inlets was 800 psld. Of this differ-

ential, 300 psld was allowed for the drop across the gas generator in-

let ports.

Gas generators HOGG3 and HOGG4 were designed on the basis of the

following maximum flows and corresponding pressures:

0.8 x 2
Ws01 = 1.8 = 0.89 lb 02/sec

1
Wshl" 1.8 = 1.11 lb H2/sec

0.8 x 0.3
Wso2 = 1.8 = 0.133 lb 02/sec

1 x 0.3 0.167 lb H2/sec_sh2 = 1.8 "

Pgl = 400 pstg

Pg2 = 800 pstg
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Psol = Pshl = Pgl + 300 = 700 psig

_o_._. _ �_oo._000_,_, ill

P - hot gas pressure - ps!g
g

Pso " gas generator 02 inlet pressure - psig EllI

Psh " gas generator H2 inlet pressure - pslg

Subscript 1 refers to power stage HOGG4 If

Subscript 2 refers to control stage HOGG3

vqrtex .Amplifier Geometry I

Since the gas generators and the vortex amplifiers form one inte-

grated assembly, it was impracticalto design the gas generators inde- II
pendently of the vortex amplifiers. The following vn_ex amplifier

dimensions which are of s_gnificance to the gas generator design were
estimated in Reference 1. [I

A(ann)l = 5.31 In2

Ao2- 0.143 in2 ' I.J

D2. 2.50 in. t_/

l]
A(ann)2 - 0.428 In2

"See Appendix B for llst of references. [t

[1,,_
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where

A - outlet area of vortex amplifier - In 2o

A(ann ) - area of annulus button of vortex amplifierchamber- in 2

These parameters represent the results of preliminary design
calculations.

Connections to Gas Generat,or

Flsure 16 Is a schematic showlu8 the relationships between the two

gas generators, the two vortex amplifiers and the required porting for

the gas generators. These are as follows:

(1) Hydrogen inlet

(2) Oxygen inlet

(3) Nitrogen inlet

(4) Feedback port

(5) Supply pressure sensing port

(6) Supply temperature sensing port

FEEDBACK
TOHYDROGEN

PRESSUREREGULATOR

FEEDBACK w_
TOHYDROGEH

PRESSUREREGULATOR w:)))

Figure 16 - Sche_stic Shc_in$ Connections to _as Cenerators
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(7) Connection to vortex amplifier

(8) Connection to ignition source

The purpose of the hydrogen and oxygen inlet ports is to admit the
reactants into the combustion chamber. The purpose of the connection to
the vortex amplifier is to deliver the hot gas to its point of use. The

supply pressure and temperature sensing ports are required to permit
measurement of these parameters. The feedback port is required to trans-
mit the hot gas supply pressure to the hydrogen control val_'e which
modulates the hydrogen flow to maintain the hot gas pressure at s desired

value. The nitrogen inle_ port is required to supply nitrogen used for

room temperature testing of the system, because the hydrogen injection
ports are not large enough to supply the flow of room temperature nitro-

gen necessary to fully pressurize the system. The low flow gas gener-

ator was started by using a spark plug as an ignition source. This was
satisfactory, because there was continuous flow through this gas generator,
making it necessary to ignite it only once during a run. However, the

flow through the large gas generator was periodically shut off during a
run and some method of automatic reignition upon the resumption of flow

demand was needed. This was provided by bleeding a small quantity of hot
gas from the small gas generator to the large one. The small gas grner-
ator was always at a higher pressure than the large one and this hot gas

bleed flowed continuously, furnishing an ignition source for the large
gas generator.

C_iculatlon of Significant Chambe_ Dimensions

Figure 17 is a schematic of a vortex-doublet gas generater with

as associated vortex amplifier. The schematic indicates the notation

for geometry and pressures as follows:

A° = outlet area of vortex a_pllfizr - in2

A(ann ) = area of annulus around button of vortex amplifier - in2

As - outlet area of gas generator - in2

Do - diameter of vortex amplifier outlet - in.

D - diameter of vortex amplifier chamber - in.

Ds - diameter of gas generator outlet - in.

D - diameter of gas geuerator - in.
g

Dsh - diameter of slngle H2 Inlet orifice - in.

Dso - diameter of single 02 inlet orifice - in.
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)
=.

L - length of gas generator- in.
g

P - vortex amplifier supply pressure - pslgs

Pso = gas generator 02 supply pressure - psig

P = gas generator pressure - pslg
g

Psh = gas generator H2 supply pressure - psig

A major objective of the design was to minimize the size of the

overall assembly of gas generators and vortex amplifiers. Hence, the com-
bustion chamber volume was made as small as is consistent with combustion

stability and acceptable temperature of the structure. The vortex-doublet

gas generator is characterized by a "pancake-shaped" combustion chamber

having L /D < 1. The name "vortex-doublet" implles a combustion chamber

in whlchgtheg propellants are _.nJected "at the periphery in a doublet and

combine while traveling in a vortex, following a spiral path to a center

outlet hole. The oxygen is injected into the chamber in a radial direction

while the hydrogen is injected tangentlally, The hydrogen flow induces

a vortex flow fleld, and combustion Is accompllshed along a splral flow

path. This provides an extended average path for burning and results in

a compact configuration. In other projects using hypergollc liquid bl-

propell_nts, stable, eff_clent combustion has been realized using a
characteristic length, L of 7 inches.

][4"J f// *

'"
D DO A Pg ---

g:

Pso D*k

Figure 17 _ Sc.hematic of Cortex-Doublet Gas Generator

wlth Asso_.iated Vortex Amplifier
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The first step in sizi-xg the gas generator was to determine the

size of the inlet orifices. The effective areas of the orifices are I_Igiven by : ,'

(CdA) i = (3)

wh.,° II
(CdA) i = effective area of inlet orifice - in2

_ = gas weight flow- ib/sec [I

T = absolute temperature of gas at zero velocity - _R

C2 = characteristic coefficient of gas - °Rl/2/sec I]

Pu upstream absolute pressure - psla

Pd = downstream absolute pressure - psla

fl(_--_-') = sonic flow function !l

C2 =I k _ (k + i) (4)

J
H

where

k = ratio of specific heats - dimensionless

g = gravitational acceleration at standard sea level-

386 in/sec 2 I]

R* = universal gas constant = 18,500 in-lb/lb-mole-°R

M = molecular weight of gas - Ib/ib-mole []

n
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The following va]ues were substituted into equation (3) where,
as before, subscript 1 refers to the power stage HOGG4 and subscript 2
refers to the control stage HOGG3. •

= 0.89 ib/sec
sol #

Wshl _ i.Ii ib/sec

Wso2 = 0.133 Ib/sec _
b

Wsh2 = 0.177 ib/sec _

T = 520°R

560ORi/2
02 _"C2 for = 0. /sec

C2 for H2 = 0.140"Rl/2/sec

Psol = Pshl = 700 psig = 715 psia _

Pso2 = Psh2 = i000 psig = 1015 psia i

Pgl = 400 psig ffi415 psia

Pg2 = 800 psig ffi815 psia _

The following inlet orifice effective areas were calculated using i
the above values in equation (3). i

(CdA)sol 0.0510 in2= i:

in2
(CdA)shl = 0.254 _

(CdA)so2 = 0.00655 in2 _\

in2
(CdA)sh2 = 0.0329 :

In the initial design, each oxygen inlet was associated with three
hydrogen inlets as shown in Figure 17. The central hydrogen stream im- i
pinged on the oxygen stream and deflected it into the vortex flow path

along which combustion occurs. The outer hydrogen streams formed vortices
which served to cool the two flat faces of the combustion chamber. Since

only two streams of propellant impinge in each injector set, the injectors
are classified as doublets, even though there are four orifices in each
set.

HOGG3 used two sets of injector orifices and HOGG4 used three sets
of injector orifices. These were equally spaced around the circumferences
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of the combustion chambers. Assuming an inlet orifice flow coefficient

of 0.85, the orifice diameters were:

Dso I - 0.160 in. (3 orifices)

Dsh I = 0.206 in. (3 orifices) l

Dso 2 = 0.070 in. (2 orifices) I

Dsh 2 = 0.091 in. (2 orifices)

The hydrogen inlet orifices were spaced 0.i inch from the faces of i

the gas generator and 0.i inch apart from each other_ and hence:

Lg 0.4 + 3 Dsh (5)

Thus °

LgI = 1.018 in.

Lg2 = 0.673 in.

It can be shown that the pressure drop across the vortex amplifier

button is only a small fraction of the overall pressure drop across the

amplifier. As was set equal to A(ann), so that the pressure drop Pg - Ps
was also small. The fact that the Ps pressure was used as the source of

the feedback signal to the gas generator control system further reduced [

the significance of the Pg - Ps pressure drop. Because the pressure

drops across both A(ann ) and As were small, the restriction to the flow

from the gas generator at full flow conditions was effectively Ao (the |
vortex amplifier outlet hole). It can therefore be said that:

L* V= (6)
0

!
where

L* - characteristic length of gas generator - in. !

V - internal volume of gas generator - in 3 [
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L* was calculated by using only the gas generator volume, as
follows :

_D 2L
L* = _

4 A (7)
0

For convenience, it was assumed that the chamber diameter of each gas

generator was equal to its corresponding vortex ampllfi_¢ chamber diam-
eter. That is

Dg1 = D1

Dg2 = D2

Substituting the previously calculated values of Aol , DI, LgI and

Ao2 , D2, Lg2 into equation (7) gives:
E
F

L_ = 37 in.

L_ = 23 in. i

The flat pancake shape of the vortex-doublet combustor, with the

burning mixture spiraling toward the center, uses the full combustion

volume efficiently and therefore can maintain stable combustion with a

low L* (i.e., low ratio of volume to outlet). Moreover, since these

calculated values ignored the hot gas volume of the vortex amplifier, they

appeared reasonable in view of previous experience with vortex-doublet

gas generators operating with liquld bipropellants.

For the condition where As = A(ann ) the following were calculated

using the prevlously calculated values of A(ann ) = 5.31 in2 and A(ann)2 =
0.428 in2:

Dsl = 2.60 in.

Ds2 = 0.738 in.

The gas generators had the following proportions:

For HOGG3 DE2/Ds2 = 3.4

Dg2/Lg 2 - 3.7

For HOGG4 Dgl/Dsl _ 3.5

Dgl/Lg I = 8.8
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Calculation of Port Sizes f]

Table 8 lists the port sizes of the external connections to the L1

gas generators. These were all AND-10050 type.

Table 8 - Port Sizes of H
External Connections to Gas Generators Cl

(Units of 1/16 Inch)

iHydrogen inlet 8 16

Oxygenlnlet 4 8 H
L;

Nitrogen inlet 16 32

Ps sensing port 4 4
U

P feedback port 4 4s

Ts sensing port 4 4

Hot gas bleed from HOGG3 to HOGG4 4 4 H
|

Thenitrogenflowrequiredtobringthevortexamplifiersystem i1
to its normal pressure levels during cold gas testing was estimated

from the ratio of the C2 value for nitrogen divided by the square root

of the absolute temperature to the C2 value for the hot gas divided by
the square root of its aboslute temperature. This did not take into _]

acco_mt the effect of the slightly different specific heat ratios on the

fl function, but the resulting error was small.

For nitrogen, k = 1.40 and M - 28. For the hot gas, k = 1.36 and

M = 3.57. Hence, eq_ ,tion (4) gave C2 = 0.523 °R1/2/sec for N2 and, for
U

the hot gas, C2 = 0.185 °Rl/2/sec. Using 520°R as the cold gas temper-

ature and 1960°R as the hot gas temperature, and solving for the ratio: II

H
f_l

The resulting ratio, 5.48, was the approximate ratio of nitrogen weight

flow to hot gas weight flow required to pressurize the system. The

necessary nitrogen flows were calculated as follows: }1

For HOGG4, Wsnl = 2 x 5.48 = ii.0 ib/_ec
I

For HOGG3, Wsn2 " 0.3 x 5.48 - 1.64 ib/sec I

t
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From the above nitrogen flows and the hydrogen and oxygen flows stated

previously, line sizes were calculated.

HOGG3 Layout

Figure 18 shows a layout of HOGG3 with a preliminary version of

the associated vortex amplifier VAS. The arrangement is essentially as

indicated in the schematic, Figure 17.

The oxygen injectors were perforated ceramic plugs. These were

cemented in place and also were retained mechanically by threaded

fasteners. A gasket was placed between the retainer and the oxygen

injector to aid in minimizing leakage.

An automotive spark plug was used as an ignition source for HOGG3.

The Champion N-14Y was selected because of its long reach.

The rear structure of the vortex amplifier button formed one of

the combustlor, chamber faces, and was sealed by metallic "0" rings.

The button was the highest temperature component in the system, since

it received the direct impingement of the hot gas flow and was centrally
located in the structure.

The HOGG3 gas generator as designed is shown disassembled and

assembled in Figures 19 and 20, respectively.

HOGG4 Layout

Figure 21 shows the layout of the HOGG4 gas generator. This layout

was completed later in the program, after considerable testing had been

VOIIEXI)OUlll,fl $.tl

_ _ __1CONIIUSTIOIICHAMBER__

IIUY/OII--._ VORTEXCHilli||

\

_ -

j " ,|1 IIIJNIOII - _|lPNGIIITOIIIRPO!: 2.'

i-"---"

SKTIOllAA \

Figure 18 - HOGG3 La;_,ut
i
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Figure 19 - HOGG3 Disassembled

Figure 20 - HOGG3 Assembled
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accomplished on HOGG3. The oxygen injectors shown conform to Configura-

tion III, which was the best injector configuration tested during testing
of HOGG3.

MATERIALS SELECTIONS !
Main Structure

A number of different metal alloys were considered for use in the I

vortex-doublet gas generators. These were of three classes: the 300 I
series stainless steels, high nickel alloys, and high cobalt alloys.

References 2 through 5 were used as the source of data during the com- f

parlson. Table 9 gives the approximate chemical compositions of typical i
members of these classes. Table i0 presents physical properties of these

i

same alloys, while Table ii shows the mechanlcal properties at both room

temperature and at the desired hot gas temperature of 1500°F. Finallyj r
Figure 22 illustrates the 0.2_ offset yield strength as a function of

temperature.

The vortex amplifier could be constructed from 300 series stainless

without fear of rupture. However, some d_fficulty had been experienced 1
under the previous program wlth leakage because of thermal warplng. The

more compact nature of the new design tended to aggravate the tendency

to thermal warp. Hence, it was concluded that a material with hlgh_r ]

stren&th than 300 series stainless steel was required.

As can be seen from Figure 22, the 0.2X offset yield strengths of i

the alloys considered fall into four groupings across the temperature _.
range from room temperature to 1500°F. The lowest grouping is that of

the 300 series stainless steels. The next highest is that typified by

such alloys as Haynes 25 end Hastelloy C. The curve for Inconel X-750 I
is higher than those for Haynes 25 and Hastelloy C for temperatures up

to 1500°F. Finally, the highest yield s_rength for the various alloys

considered at temperatures up to 1800°F is that possessed by Haynes R-41. i

Inconel X-750 was selected as the material for b_th the gas genera-

tors and the vortex amplifiers. This alloy has excellent mechanical i
properties over an extremely wide range o£ temperat_res. Its yield

strength at 1500°F is higher than that of 300 series stalnless steel

at room temperature. It also has excellent oxldat_on resistance. In

addition, the melting temperature is somewhat higher than that of the

other superalloys considered. The machinability of inconel X-750 is not !

as good as the 300 series stainless steels, but is better than most high-

temperature alloys. Finally, Inconel X-750 i_ one of the oldest of the

superalloys and has a we11-establlshed field of application. Hence_ the

material is more readily available thgn some of the other high-temperature
materials.

The bolts fastening the gas generator to the vortex a_pllfler

were constructed of A286 alloy. Bolts fabricated from this material

are recommended for use at temperatures up to 1300_F. It was not !
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Table 9 - Approximate Chemical Compositions of Selected High-Temperature Alloys

Alloy F NL Co Cr ,Mo W C Ti AI Mn Otheree

304 L Stelnless 68 l0 19 0,03 2 Si i

316 StAinless 67 12.5 - 17 Z.5 0.00 2 St O.?S

ln¢onel X-750 7 70 17 0.08 2.50 0.7 1.2 Cb _ Ta 0.95

Hayne_ 25 3 _0 50 20 IS 0.I0 _ ;

Haste,Joy C 5 56 Z._, 15.5 16 4 0.08 l.d

Haines R-41 2 53 II 19 I0 , 3.2 1.5 n.007 B __

TZM-I Moly 99.5 - 0.5 0.09 Z £

Pe._ceniagesare average of a range or mallm_m _alues, percentages in parentheses are by
difference and tnciode all reelduale)ements.

Table 10 - Physical Properties of Selected High-Temperature Alloys

Alloy Density Min, Specific Thermal Conductivity o Thermal EJq_anelonib/in3 MeJtinl Heat Btu- tn/hr-ft 2 "F t_-In/In "F e
Temp. Btu/Ib*F

(R.T.) *F (R.T.) RT 1500 1000"_ IS00"F _600

304 L Stainless 0._.9 2550 0.12 I13 184 10.3

3i6 Stainless 0.29 2SS0 0.12 113 184 10,3

Tmcor.el X-f50 0.298 2'_40 0. IC3 83 15q 8.1 9.|

Haynes ZS 0.330 2425 0.092 74 I'/Z 0.0 9.1

Hastelloy C 0.323 2310 0.092 67 6.6 8.1

Haynes R-41 0.298 2385 0.108 g? 160 6.7 8.5

TZM-I Moly 0.37 4650 0.U66 3,2 3,3

Average" value from room temperature to temperature indicated

Table ii - Typical Mechanical Properties of Selected
High-Temperature Alloys (Bar and Sheet)

Roow, Temp. Room Temp. IS00"F i$00"F I500'F

Alloy Tensile 0.25 Offuet Tensile 0._'5 Offset Stress for
Strensth Yield Strensth Strenjth Yield Strength Rupt. 1000 hrs.

1000 psi _000 psi 1000 psi 10U0 psi 1000 psi

304 L Stainless 83.5 34.0 21.0 12.0 4.0

316 S|alnie es 8S,5 }8._ 27.5 I_q.5 6,6

' lnconel X*TS0 162 92.5 60.0 40.S 10.0

Haynes 25e i46 67 S0 16 _;_

Hastelloy Ca 121 58 70 40 15

Ha_'nes R -41 2C6 154 ! 30 i l0 I?.S

TZM-I Moly 132 100 95 80

=Sheet
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considered likely that the bolts would ever reach this temperature in
this application. The calculated bolt stress for HOGC3 is ii,000 psi,
which is moderate for this material.

The seal_ were mrde from Inconel X-750. This choice was based on
the same reasonln_ which led to the selection of thi,J alloy for the
housings and button. The seals had a tubular cross-sectlon and were
copper-plated, following reconunended hlgh-temperature seal practice.

Oxygen Injectors

Previous experience with hydrogen-oxygen gas generators at Bendix
Research Laboratories had indicated that one of the more critical &as
generator design parameters is the oxygen inlet v_locity. The stoi_hio-
metric temperatere o£ the hydrogen-oxygen reaction in the pressuzc ra_
of the two gas generators is on the order of 6400*R. If the oxygen inl¢_
velocity is too low, the reaction zone is close to the oxygen Injector
so that burning or melting of the injectors may easilj result. The
minimum velocity in HOCC3 is extremely low, and in HOGG4it is zero since
HOCG4shuts off .'ompletely when the SITVC system output is zero. There-
fore, materials such as stainless steel, copper, and ceramic _xides were
considered for th_ injectors. It was concluded that the material and
configuration of the injectors should be determined by experiment. It
was necessary Ito develop an in_eetor configuration and select a material
that would overcome the effects of low velocity.
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TASK 2 TESTING

! The principal area that required devleopment in the vortex-doublet
hydrogen-oxygen gas generator was the method of propellant injection.

The combustion chamber design proved to be satisfactory, although some

I] evidence of excessive at the outlet hole
temperature was observed_

Figure 23 (center body). Because of the extreme temperatures (6000°F)

associated with the direct combustion of the hydrogen and oxygen pro-

took place within the center of the combustion chamber away from both

walls and injectors. The configurations of the oxygen injectors and

[I the materlals fromwhich they were made were extensively studied. Fig-ure 24 shows four injection schemes that were test evaluated. The goal

was to devleop an injector configuration that would allow the generator

II to be operated efficiently at all flow levels from maximum design flowto zero flow wlthout damage to the generator or to the injectors. Con-

I-! figurations I and II were both initial design configurations. Configura-

tion I had a protruding oxygen injector made from ceramic and a set of

] three equal hydrogen ports positioned off the tangent to intersect theoxygen port. Configuration II was llke Configuration I, except that

the oxygen injector did not protrude and the hydrogen ports were tangen-

tial. The first hot tests were used to determine the proper ignitionprocedure and to evaluate Configurations I and II. Both of these con-

figurations proved to be inadequate. The major difficulty was that the

oxygen injector and the gas generator wall just downstream of the o::ygen

injector in the direction of hydrogen flow were severely eroded (Fig-
ure 25). This damage was caused by the direct combustion of a portion

of the hydrogen and oxygen against the metal surface. Melting or metal

burning continued, until a small pocket was created which essentially

allowed the gases to burn in the newly created free space. This effect

was attributed to the fact that the flow from the center hydrogen port

I Figure 23 HOGG3 Disassembled, with Vortex Amplifier

i
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CONFIGURATION I CONFIGURATION I"1'

I-

t°+.+" T°'.,

CONFI6URATION m CONFIGURATION IV' _.

Figure 24- Gas Generator Propellant Injector Schematics i!

r--

directly intersected the oxygen flow stream, causing oxygen to contact |
the metal surfaces. At this point, some of the oxygen combined with

some of the hydrogen at temperatures greatly in excess of the metal's

melting point, producing a cavity in the chamber surface. By way of

comparison, it is interesting to note here that direct impingement of

propellants has been proven in the past to be a successful method of

injection with the hypergollc liquid propellants. However, while these

propellants undoubtedly have a fast reaction rate, the reaction rate of f+

gaseous H2 and 02 is much faster because the propellants do not have to I

vaporize. Thus, with direct impingement, gaseous H2 and 02 begin to
burn immediately near the outer wall while, with liquid propellants, I

there is a delay until the mixture has swlrled inward sllghtly away from
the wall.

Configuration III sought to correct this difficulty by plugging i+
the center hydrogen port and by enlarging the two side ports. In addi- _"
=ion, to provide further metal protection, a third hydrogen port surround-

ing the oxygen injector was installed. This concentric port provides LF.

[
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Figure 25 - Gas Generator Injector Damage (Configuration I)

20S54

Figure 26 - Stainless Steel Injectors After T_st
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approximately 10% of the total hydrogen flow. The hydrogen "shield"

chamber walls from direct contact with oxygen. Also, without direct

impingement of a t_gential hydrogen Jet, the oxygen _et itself is

allowed to penetrate radially deeper into the combustion chambe_ before }_

it contacts the general swirling flow from the combined doublets. In

this way, the oxygen is allowed time to completely exit from its inJ_-

tot before any appreciable combustion takes place. Stainless steel ()

tubes were tried in Configuration III first, but these were unreliable. (I

Some lasted several tests but most were destroyed immediately. A pair
{}

of stainless steel injectors, after test, is sheen in Figure 26. The

longer injector is at approximately original length. Copper injectors

were then tried in Configuration III and proved to be quite satisfactory. U
Copper has greater resistance to ignition in an oxidizing atmosphere

when compared with stainless steel. It does have the disadvantage of [

a low melting point, but this is offset by its high specific heat and [|
thermal conductivity.

These three innovations, xAamely the elimination of the center [
hydrogen port, the inclusion of an annular radial hydrogen port and [
the use of copper oxygen injectors, were the key design changes in

achieving a successful vortex-doublet, hydrogen-oxygen gas generator. [
It was observed, however, that there was some slight erosion of the

injector caused by particle impact on the side facing the swirling flow.

To combat this not-too-serlous problem, Configuration IV was designed ,

which uses a short oxygen injector that does not protrude into the Ii
combustion chamber. _

This configuration was tested and it was observed that some down-

stream chamber wall burning did occur. This undoubtedly happened at
deep throttling where the oxygen Jet velocity decreased and allowed

the flame front to approach the injector region. Configuration IV was

considered dangerous for this reason, and it was concluded that Con- ||

figuration III, the previous configuration, was the best that had been [J
tested, and it was used as the basis for the HOGG4 power stage gas

generator. Photographs of the final configuration after testing was []

completed are shown in Figures 27 and 28. The center hydrogen ports II
were plugged, as stated.

Evaluation of Configuration III with copper injectors was obtained [I

through a series of tests ending with Test No. 3G-TB. These te_ts _I
covered a period of 450 seconds in whi_, many turndowns, shutoffs and

restarts were accomplished at a mean gas temperature of 1500"F. In the |
final test, a turndown of 6 to 1 was achieved. The gas generator was

subjected to three full-range flow modulatlons. A summary of the flows
t

recorded in this test appears in Table 12.

Test Facility and Procedure [

Figure 29 shows the HOGG gas generator on test. A breadboard

vortex amplifier similar to VAS, the control stage vortex amplifier of {I

,i-
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Figure 28 - Close-Up of Copper Injector After Testing

(Final Configuration)
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Table 12 - Test No. 3G-7B Data Summary

Chamber Pressure _op H2 Flow Total
Test Pressure Across 02 02 Flow Supply Flow Range*

Supply 0/F Ratio Temp. Max Flow
Point Ps Injector w Wh Flow

psia psid lb/sec lb/sec w, lb/sec Ts' °F Min Flow

I 815 130 0.091 0.120 0.211 0.76 1440 1.59

2 818 0 0 0 0 - 640 Shutoff

3 835 5 0.024 0.049 0.073 0.50 1440 6.0

4 835 15 0.040 0.060 0.!00 0.68 1580 3.6

5 835 50 0.069 0.085 0.154 0.81 1800 2.1

6 835 68 0.084 0.092 0.176 0.92 1900 1.7

*Based on Oxygen Flow Range

Figure 29 - HOGG3 Test Installation

Task 3, was used as the variable load. A simplified schematic of the
test facility is shown in Figure 30. Hydrogen and oxygen stored in the
gaseous state at high pressure were brought together in the gas genera-
tors through a system of pressure regulators. The O/F ratio was fixed
by the propellant injector areas, as long as the hydrogen and oxygen
inlet pressures were equal. Therefore, is was necessary to slave the
propellant inlet pressures together, so that they remained equal.

Combustion chamber pressure was maintained by feedback to the
hydrogen regulator end by comparison wtth its set dome pressure. The
HOGG3gas generator operated at a pressure of 800 psig. The outlet flow
was regulated by varying the control flow to the vortex amplifier. Tests
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fNTERMEDIATEr" SERVOREGULATOR

I N2 CONTROLFLOW02 INJECTOR

VORTEX,DOUBLET VORTEX
'_ HOGG AMPLIFIER EXHAUST.

SET PRESSURE )

|
H2 INJECTOR

|
FEEDBACK p-4s34

Fisure 30 - Schematic of Hot Gas Test Facillty - Task 2

1i

U

Fisure 31 - HOGG4Bleed Injector Confisuration

I
g
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were controlled from a remote firing panel which had provisions for
starting, modulating, stopping and restarting tho gas generators. All
propellant flows were measured with calibrated orifices, located Just
upstream of the pressure regulators. The pressure and temperature of
the hot gas, as well as many ad_Ltional pressures, were recorded to
provide a co=plete record of performance.

HOGG4Testin_

The basic chamber desing of HOGG4developed in Task 3 proved to be
satisfactory, as was proved previo_mly in HOGG3. The oxygen injectors
were made of copper and were designed like those of Configuration Ill,
and these performed very well. The major development area was in achiev-
ing a reliable i_nition. This gas generator is ignited from HOGG3by
bleeding gas through an external channel. The exact location of the
bleed gas injector in the HOCG4chmber proved to be critical.

The injector problem was solved by locating the ignition bleed
injector Just donwstream of one of the oxygen injectors, and angling it
so that the oxygen end bleed gas streams intersected. This configuration
is shown in Figure 31. The dmnaged areas in the combustion chamber were
cau_,_d by earlier modifications.

The HOCC4 gas generator performed _ell; it produced gas at 1500°F
at a flow rate of 2.0 ib/sec and could be modulated down _o co_lete shut-
off. Reignition occurred reliably when flow was de_nded. This genera-
tor design is considered very satisfactory and its performance was good.
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DEVELOPI4_NTOF FULL-SCALE SITVC SYSTEM

(TASK 3)

The objective of Task 3 was to design, build and test a complete
s_usle-az',is STIVC system havln 8 no moving parts except in the pilot stage.
The syst_n comps:lees a power stage vortex amplifier rated at 2.0 Ib/sec
and integrated with the large vortex-doublet gas generator built in
Task 2, a control s:.age vortex amplifier integrated with the smaller
vortex-doublet gas generator of Task 2, and an electropneumatlc pilot
valve that provides the fluidic signal input to the control stage. In
addition to demonstrating the operation of a practical SXTVCsyste_ Incor-
poraCin 8 staged vortex amplifiers, it was intended to test the validity
of scaling vortex amplifiers from one size to another. Therefore, the
two vortex amplifiers for the full-scale system were designed by scaling
up directly from the control stage and power stage amplifiers developed
in Task 1.

In Task 2, development had been concentrated on HOCG3 (the gas gener-
ator for the control stage), and thereafter HOGG4 (the gas generator for
the power stage) was designed and built using information from the HOGG3
development. Consequently, the development testing of HOGGAand of the
bleed line ignition method for this gas generator were included in the
Task 3 program.

SU_LqR¥ OF RESULTS

From the insight gained in the preceding two tasks, the Task 3 staged
system was designed. The staging techniques developed in Task 1 were com-
bined with the development of the pancake-shaped gas generator to design
and build the Task 3, 2.0 lb/sec, hot gas system. The _ao new gas gen-
erators, one capable of supplying hot gas to the power stage and the
other for the control stage, were integrated with their respective vor-
tex amplifiers as shown in Figure 32. The control and power stages were
integrated using internal m_nifolding.

Both cold and hot gas tests were performed on the system. The primary
objective of the cold _ests was to optimize the system performance. Since
the system was a direct scale-up of the Task 1 unit, the majority of the
design permaeters had been set, The cold gas tests served to verify these
paraneters and to determine the opt_un receiver position.

The final result of the cold gas tests was a close approximation of
the final performance obtained on the Task 1 staged system. Turndowns of
greater than 8 to 1 with approximately 100Z initial flow recovery w_re
accomplished, indica_ing gains in excess of 200. (By comparison, total
flow modulations of 6 to 1 were demonstrated with both cold and hot gas
on the Tesk 1 system.)

The initial her gas test involved the development of the hot gas
bleed method of ignition for the power stage gas generator,, However.
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Figure 32 - Integrated Vortex Ampllliers and Gas Generators
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because of hardware damage sustained in preliminary hot gas testing, no

successful staged hot tests were accomplished in Task 3. In the 21 minutes

of hot gas testing on this system, none of the results obtained approached

those demonstrated in the cold gas test. The test procedure required that

the control stage gas generator be started first. During the time interval

required for establishing the proper control stage operation prior to

starting the power stage gas generator, the power-etage control manifold
structure was subjected to thermal stresses by the hot control gas flowing

through the internal passages. (These passages are shown in Section BB

of Figure 33, the overall layout of the Task 3 system.) This hot gas pro-

duced locallzed expansions which caused metal cracks to occur between the

internal passages and the internal wall of the chamber. This internal

cracking allowed control flow from the control stage to leak into the

power stage without contributing to swirl, thus severely degrading

performance.

Internal hot gas manifolding was used in this project as a means of

achieving a degree of compactness. The results have shown this type of

design to be impractical. Since this program was primarily for develop-

ment of vortex amplifier and gas generator technology_ sophisticated high-

temperature structural design was not included. Inconel X-750 and a

massive structure were used as insurance against thermal damage but were

inadequate in the face of temporary overtemperatures and localized expan-

sions imposed by the starting procedure. It is apparent that future

designs of this size, operating on gases at th_s temperature, must employ

structures and materials specifically selected to withstand thermal effects.

A composite design involving a refractory liner surrounded by insulating
material is indicated.

In the initial Task 2 hot gas tests, the power stage ignition problem

was solved by the proper location of the ignition gas bleed. However,

during Task 3 _he body section containing the control channels had been

damaged beyond repair. The remaining Task 3 hot gas test only resulted

in proving this fact after several attempts were made to repair the damaged

walls with various welding techniques. The results of the Task 3 hot gas
tests are sm_arlzed in Table 13.

The results of the cold gas tests of the full-scale system, when

compared with the test results of the quarter-scale system in Task i,

show that the staged system and i_s components scale very well. This

offers the posslbility of saving time and cost by permitting a syste_n to

be analyzed and its performance to be establlshed by using a smaller unit.

Then a full-size system can be designed and built in its final conflgura-

tlon without extensive preliminary _estlng and modification.

SYSTEM DESIGN

The Task 3, 2.0 lb/sec, hot gas staged system was designed from the

parametric da_a and insight obtained from the 0.5 ib/sec hot gas Task 1

staged system and previous development programs. The individual staged

vortex amplifiers include integrated gas generators and are linked together
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Table 13 - Results of Task 3 Hot Gas Tests

Power Control Gee Purpole of Test Teat Results Performance and Action
Test No. Date SteRe Stage

4 9-20 VA6 VA5 H2-O 2 flO(;G3 Ignition snd Ignition and psrtiel turndown IfOC,G3 Gas Temp. e 1635°y
1966 turndovn wit|' electro- accomplished; pilot stage flow 110(',_,3 Duration - 80 sac

pneumatic pilot stage capacity too small. No damage. Partial Turndown

$ 9-20 VA6 VA5 H2--O2 Ignition of HO_,_4 from liOGG_ ignition not accomplished HOC,_3 Gas Temp. - Ib35'F
HOGG_ because of thcrmocouple failure HOGG3 Duration - 60 sac

in automatic shutoff circuit. Partial Turnd_n

Skin temp. themo©ouple
replaced with gas
temp. tharuocc_uplex.

6 9-21 VA6 VA5 H2-O 2 Ignition of HOGG4 from HOGG4 ignition not accomplished DOCa3.3Cea Temp. - 18350P
HOGG3 because of external leak and HOAX;3 Duration - 43 ,ec

resulting fire. Test manually Full Flow
terminated. Installed new scala.

7 9-21 VA6 VA$ H2-O 2 Ignition of HOGG& from HO_G_ ignition not accomplished HOGG3 Gas Tap. _ I§OOeP
HOGG3 bccaone of damaged hydrogen HOP_3 Duration - _8 sec

pressure regulator. No ds_tse Approx. full turndovn
to gas generators, due to low pressure

level.

Replaced regulator diaphragm
and installed check valves.

8 9-23 Vk6 V_ H2-O 2 Ignition of HOGG4 from HOGG4 Ignition not accomplished HOrn3 Gas Temp. - 16_5"P
ItOGG3 beeanae control Stage turndown HOGG3 Duration - 37 sac

limited by pilot stage capacity. Partiml Turnd,,wwn
ElectropneumatLc sorvovalve
replaced by high capacity
pressure regulator.

9 9-23 VA6 VA5 H2-02 lsnitlon of HOGG4 from HOGGh ilOitto_ not accomplished HOGS3 Gas Temp. - 16350F
HOGG3 because of improper O/Y ratio HOGG3 Duration - 87 sac

due to charactertatLc of gas HOGG3 turndown euffl-
regulation system, clent to etxrt HOGG4

fl_s.

Reset regulation chxrecteristtee
sad relocated hot 8as ignition
blemd. Zlnltlon probleu on
HOGG4 hnve been solved.

10 9-3Q VA6 V/_q HI-O 2 Initial Task 3 hot 8na HOGG6 lgnltlon scc(,npltshed but HOGG3 Gas Temp. - 16000p
test hardware was damaged by excas- HOGG_ Gas Temp. o --

siva oxygen at start, Test Duration - 40 mac
P_pairad demised areu. role-
coted iRnitLon blmad en_ de-

creased HOGG_ oxygen port area.
Some vortex amplifier parformxnca
data obtained st less thin full
flows

11 10-10 VA6 WL5 N2 Leak Test VA6 control port body leaked P,tpairsd creaked area8 by welding.
both internnlly and externally
from control pressure channeling.

12 10-21 Vh6 VA$ H2-O 2 Task 3 parfomance HOGG_ gas |anerator ignition Test duration o 92 eec
static teat accomplished. P_ow test aocom- Turnd:_n not eccempllshed because

p11ahed on HOGG4 gas generator, of interns1 control flow leakxp.
NO generator dmia. Crncked areas reopened and were

revelded.

13 10-31 VA6 Vh5 HI-O 2 Tuk 3 performance HO_ gas 8anerntor ignition Some perforaance data o_teinad
Static test accomplished. Teat taruinxtnd at full fl_.

because of ms|siva external Test duration o 110 eec

leaks. HOGG_ Gas Temp. - 1185"P
Plow • 2.06 lblonc (max)
Internal creeks repaired by weld-
ins. gloctropneometic earvovelve

installed vith bypass orifice for
use in dyn_lc teat.

1_ 11-|3 VA6 Vie H2002 T88k 3 porfomnce HOGG4 ignition not eecoupliehed. Test data indicated massive internal
static and dynaliic Control |teas modulated six (6) leakage with reeuXtin8 poor perfornanee.
text tines. Test duration • 330 sac

It_GG3 Gas Temp. - 1550"7

15 1_-$ V&6 VA$ H_-O 2 T_k 3 static and HOGG4 8_ generator llnltlon Test data indicated ua0eive i_te_l_,l
dynule performance eecompUehad. No external leaks, leakage with resulting poor parlor-
test. Static end dynamic teats were manta.

accomplished. Test Duration - 330 see
_OGG3 Gas Temp. • 1550°Y

Hardware not repairable.

Tuk | NOG04 teStS completed.
Task 3 tecta eemeluded because of d-n-pd hardware. Total Tins 12_? eec
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I in a series arrangement. The main philosophy used in the design was tobuild a unit capable of proving the feasibility of the staged vortex

amplifier concept for SITVC application without attempting to design a

l lights,eight system.An objective of the basic design was to eliminate all posslble areas

where leaks could occur. Thus the control and power stage vortex amplifiers

l were stages in series by means of internal manifolding. The same internalmanlfold technique was employed in designing a pilot flow manifold in the

control stage.

l Power Stage

The power stage is designed for a flow rate of 2.0 Ib/sec of H2-O 2

i at a supply pressure of 400 psig and a temperature of 1500°F. The vortexchamber outlet orifice is the principal parameter which determines the

flow capacity of the vortex amplifier. From the orifice weight flow equa-
tion the outlet diameter was established at 1.500 inches.

I From past experience, the vortex chamber diameter and chamber length
are related to the outlet diameter by given ratios. The chamber diameter

is 6 times the diameter of the outlet orifice, while the chamber length

I is one-thlrd the outlet orifice diameter. Using these two ratios helps
insure stabillty and good performance of the vortex ampllfier. From these

ratios the chamber diameter was established at 9.00 inches, and the chamber

length at 0.500 inch.
The vortex chamber button diameter was sized to provide an annular

area equal to 3 times the outlet orifice area. This is considered to be

the optimum size to assure, on the one hand, that incoming supply flow isunrestricted and, on the other, that all of the supply flow interacts with
the control flow. The button diameter thus was calculated to be 8.62 inches.

The button length was selected at 0.750 inch_ which is one-half of theoutlet orifice diameter.

The receiver design was developed during Task i. This development

i established the receiver diameter as 1.9 times the outlet orifice diameter;the optimum receiver position was determined to be at an axial distance

equal to the outlet orifice diameter. Thus, the receiver diameter for

I the full-scale amplifier was calculated as 2.85 inches, and the receiver
was located 1.5 inches from the outlet orifice plate.

The vo_'tex supply flow is modulated by the output flow of the control

l stage. Six ports were provided in the power stage amplifier to injectthis flow into the vortex chamber. The ports are equally spaced and tan-

gent to the vortex chamber diameter. They lle on a plane common with the

face of the button. By dividing the maximum flow of the control stag_ by

a factor of six and by assuming a maximum inlet control pressure of 600pslg, the diameter of each control port was calculated to be 0.176 inch.

Thus, the total injection area was 0.146 in2, which would achieve an 8-to-i

turndown of the power stage.

I
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To simulate the secondary inJectlon load, an orifice was placed at _:

the outlet of the receiver. At a flow recovery of 90X of the total flow,

the maximum receiver pressure was 25X of the supply pressure. With these

facts, the load orifice area was established at 5.92 in2. {]

A summary of the preceding design parameters is shown in Table 14. _J

Table 14 - Task 3 Power Stage Vortex fl

Amplifier Final Design Parameters t_l

Outlet Orifice Diameter Dol - 1.500 in.

Chamber Diameter (DIIDol - 6) D1- 9.00 in. i]

Chamber Length (Dol/L1 = 3) L1 = 0.500 in. II

Button Diameter DBI ffi8.62 in. !

Button Length (Do/LB1 .,, 2) LB1 "' 0.750 in. 1/ '
l }i.

Control Port Diameter (6 Ports) Dcl = 0.176 in. i

II(DrlDolReceiver Diameter ffi1.9) Dr 2.85 in. _ l

OoO: )iiReceiver Position ( / - i) Xr _i

Control Stage !

The control stage is a smaller version of the power stage. The flow l-I !
requirement is _2-O2 gas at 1500_F and a flow rate of 0.325 iblsec. This l_l t.
flow rate represents an arbitrary increase of 30% over the theoretical

control flow tha_ is necessary to obtain an 8-to-i turndown of the power _)

stage. The Task 1 development demonstrated that, for a hlgh-galn system, l/
the control stage must have excess capacity. This allows a biasing flow

point to be established that is in the partially turned-down, hlgh flow {i
gain region

and a supply pressure of 800 pslg, the outlet orifice diameter was calcu-
I}

lated to be 0.445 inch.

The same ratios that were used to determine the power stage design /I
parameters also apply to the control stage design parameters. The only

exception to this is the chamber diameter, which was rounded off to 2.875

inches. This yields a chamber-to-outlet diameter ratio of 6.46. This ]

increase was adopted to provid_ flexibility in the design of the control )

stage. In the event that the 30% margin in outlet flow was not sufficient

to allow the control stage to modulate in its hlgh-galn region, the outlet 1
area could be increased as much as 20_ without Jeopardizing the stabillty I L
of the control stage. I

[]
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These and all the remaining design parameters of the control stage
are shown in Table 15.

Table 15 - Task 3 Control Stage Vortex

Amplifier Final Design Parameters

Outlet Orifice Diameter Do2 - 0.445 in.

Chamber Diameter (D2/Do2 - 6.46) D2 - 2.875 in.

Chamber Length (Do2/L 2 - 3) L2 - 0.148 in.

Button Diameter DB2 = 2.770 in.

Button Length (Do2/LB2 - 2) LB2 - 0.222 in.

Control Port Diameter (6 Ports) Dc2 - 0.050 In.
i

Materials

The material study that was accomplished for the Task 2 design also

applies to the Task 3 system. All hot gas components of the control stage

and power stage were fabricated from Incgnel X-750. The only exceptions

to this were the power stage outlet orlflca plate and the receiver, which

were manufactured from molybdenum alloy TZM-1. This material had already

been used successfully in this application in the previous test prograr

and in Task 1. It has excellent hlgh-temperature properties. Past experi-
ence has shown that components made from this material retain their dimen-

sions and sharp edges during hot gas testing.

SYSTEM TESTING AND EVALUATION

The Task 3 system was initially tested with cold gas to evaluate the

design and the system performance. Although the system is designed for

hot gas, preliminary cold gas testing has in the past proven to be a vali,_

procedure in evaluating a system, Close correlation between hot and cold

gas performance was obtained in testing the 0.5 lb/sec Task 1 system.

All of the cold and hot gas tests were conducted in the same faclllty.

The facility has provision for operating with either inert gas or pro-

pellant gases. All testing is accompllshed from a remote control panel

with all pressures and temperatures electronically instrumented. This

test installation allows convenient variation of flows and pressures and

provides adequate instrumentation to obtain the data necessary to evaluate

the system and component characteristics.

A block diagram of the facillty is shown in Figure 34. The actual

system and control panel are shown in Figures 35 and 36.

In the initial evaluation of the system, three cold gas tests were

accomplished. The first test performance was entirely satisfactory. Then
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Figure 35 - Task 3 Hot Gas Test Facility

Figure 36 - Task 3 Hot Gas Test Control Panel
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two additio_l cold gas tests were run to verify the optim_Q receiver
position and the oversll test results. The system design produced the [:_
required performance, end the design position of the receiver was exper£-

_J

mentally verified to be the optimum poeition.
(!

The best sysCemperformance was produced when the ratio of receiver II
location to outlet diameter was unity. This axial location determined the
operatimS re_ion of the system and resulted in accompl_hing ell of the
goals. From the selected bias point receiver recovery of 90Z to complete
shutoff, an overall gain of 214 was realized in Te8c No. 2. In this test
ae in the other two cold Casts, initial flow recoveries of approximately
100Z were obtained. This performance i8 8ummari_ed in Table 16, which
contains the performance sulmary for all of the cold sas tests. Figures 37
and 38 show the performance of Test No. 2 plotted in the conventional

method and in SITVC format, t
Hot tests were conducted principally to demonstrave the integrated II

staged unit when simulating a single-axis secondar_ ,n_eccion thrust
vector control system. Siuce the system design involved two integrated }1
gas generators, hot testing depended on ignition of both gas generators. lJ
Ignition of the control stage gas generator i8 accomplished by an oxygen-

!t

1.1

il
11
H

Figure 39 - Task Repair3PowerWeldsStageinVOrteXchamberAmplifierShoving

1968004293-081



F

rich start with the energy source supplied by a spark plug. The power

stage gas generator is ignited by a hot gas bleed from the control stage

gas generator. In the process of developing the hot gas injection scheme,

a propellant system failure exposed the power stage to a temperature in

excess of 2500°F, caused by an oxygen-rich hot gas flow. This damaged

the power stage vortex amplifier wall and set up a transient temperature

gradient in the vortex chamber. The temperature gradient developed thermal

stresses which caused the metal to crack. These cracks degraded the vortex

characteristic of the power stage by allowing control flow to communicate

with the supply flow through the axial cracks in the supply plenum region

upstream of the vortex chamber.

Several attempts were made to repair the damaged areas in order to

complete the hot gas testing on the system. Various welding techniques
were used to close the surface cracks that were in communication with the

contlol flow internal manlfold. The openings were sealed, but, as hot

testing continued, new cracks developed and, as a result, no successful

hot staged test was accomplished. Figure 39 shows the power stage vortex
chamber with the welded areas.

Although a complete system test was not accomplished, the 21 minutes

* of hot gas testing did result in a successful method of igniting the power

stage with a hot gas bleed and in demonstrating the capabilities of the

vortex-doublet gas generator. Full flow and full turndowns were accom-

pllshed on both the power stage gas generator and the control stage gas

generator without damage.

69
i

1968004293-082



pECEoING pAGEBLAHKNOT Rt.ED.

RECOMMENDATIONS

HIGH-TEMPERATURE FLIGHTWEIGHT DESIGN

The interior configuration of the vortex amplifier and gas genera-
tor has largely been established by the present contract. It is recom-

mended that these designs should now be refined to reduce weight and size
and to enable the devices to withstand severe thermal transients. Pre-.

liminary investigations have indicated the feasibility of incorporating

the control stage vortex amplifier inside the power stage with a great

improvement in profile and a large weight reduction. In other investi-

gations (Reference 6) the use of composite structures which include thin

concentric shells of refractory material, insulation and structural metal

has been proved and should be investigated for this application. A

materials study and a transient thermal stress analysis would show how

to minimize thermal stresses and how best to design structures to with-

stand thermal stresses. The goal would be to achieve a flightweight

vortex amplifier system capable of integration with a rocket engine for
thrust vector control.

ENGINE BLEED

The use of gas generators to supply the vortex amplifiers is recog-

nized as an independent source of hot gas. A more logical method would

be to obtain the hot gas directly from the engine by tapping the chamber

or nozzle. This would save weight by eliminating one or both gas generators,

separate regulators and ignition systems. It is recommended that engine

bleed be studied because it appears to be a logical and simple way to

obtain hot gas for secondary injection thrust vector control.

BASIC DEVELOPMENT

The vortex amplifier has not been developed to its full potential.

One of the principal areas that require investigation is the region Just
downstream of the vortex chamber exit where the receiver is located. The

present contract resulted in the achievement of a configuration that met
the specified performance. However, little is known about the effects of

loading, scaling, geometry and pressure effects. It is recommended that

this area be investigated with a comprehensive program of analysis and

experimentation to define and normalize the flow in this region. Once

normalized parameters are established, they can be applied to design the

receiver and output section to fulfill any specification requirement.
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APPENDIX A

EXPERIMENTAL DEVELOPMENT OF LARGE DIAMETER RECEIVER

-_ In an effort to better understand the flow field of the gases

emerging from the vortex chamber, a series of short experiments were

perfor_,ed. Two operating conditions were studied, one in which the gas

is unswlrled and the supply flow is unrestricted, and the second in which

i! the vortex chamber is lnmaximum swirl and minimum flow is exiting.

The emerging gas is relatlveiy uneoned in the first condition, and

i the outer boundary of flow can be defined as shown in Figure A-l. Allof the gas emerging from the vortex chamber is contained within this

boundary. It is coned slightly because of the normal flare of a free

Jet and also because the control stage is admitting a minimum amount of

i control flow. This boundary was established by experimenting with three
receiver sizes with diameter ratios of Dr/D o = i.i, 1.2 and 1.3. These
receivers were axially positioned to give the best flow recovery.

I The best flow recovery achieved was in the range of 90 to 94%.
The receiver in all cases was loaded with the same fixed orifice simu-

lating the secondary injection nozzle. Pressure recoveries of 25% were
achieved. The location of the theoretical 100% flow recovery point was

approximated by scaling up the receiver size on an area basis to improve

the recovery from the actual value up to 100%. The assumption was made

i that the recovery was proportional to the entrance area of the receiver.This was done for the three receivers. A linear relationship was indi-

cated, starting at the orifice edge and extending out at a half angle of

1 22 degrees relative to the centerline.

I_, A second test series was performed to define the inside boundary

of the hollow cone of gas under the maximum swirl and turndown condition.

[_ Uslng the same series of receivers as were used for the previous testseries, the inner boundary of the cone was determined as shown in Fig-

ure A-2 by positioning the receivers axially to obtain minimum receiver

flow. Thls data established the inner boundary at a half angle of 41

! degrees. The inside of the cone is a stagnant area, with no flow underthe maximum swirl condition.

Superimposing these two flow conditions, as shown in Figure A-3,

]! revealed _hat there is a region (region IIA H ) in which receivers can be

sized and positioned to achieve 100% flow recovery and complete flow

shutoff. On the basis of the tests performed with receiver diameter

i] ratios of i.i, 1.2 and 1.3, it was determined that the minimum receiversize that will fulfill this c_ndltlon has a diameter ratio of Dr/D o - 1.7

at a relative axial position of 0.86 DO . This is the crici_al location,

since the inner and outer boundary curves cross at th_s point. Receiverslocated in region "A" beyond this critical point at higher maximum ratios

Itl
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Flow Conditions

75

1968004293-086



and larger axial spacings will allow a theoretical maximum flow recovery

of 100% and, with maximum swirl, complete flow shutoff. Receivers

located other than in region "A" can achieve either 100% maximum flow

recovery or zero minimum flow, but never both conditions for a given

receiver size and spacing.

A series of larger diameter receivers, Dr/D o = 1.6, 1.7 and 1.9,
were tested to supplement the previous data. The results were found to

generally support the foregoing conclusions. Complete flow shutoff was

obtained; however, it was found that flow recoveries greater than 94%
could not be achieved. This is attributed to the fact that reclrculation

occurs in the larger receiver sizes. The phenomenon is shown in Fig-

ure A-4. Some of the gas flow entering the receiver reverses direction

and escapes. This flow reversal is the direct result of receiver pres-

sure loading caused by the downstream load orifice that simulates the

secondary injection nozzle required for a thrust vector control system

application. Lowering the maximum receiver pressure by increasing the
size of receiver flow load orifice would tend to lessen the reclrculatlon

and improve total flow recovery.

Since the maximum size receiver tested had a Dr/D o ratio of 1.9, the

effect of using very large receivers at excessive distances was not investi-

gated. It is to be presumed that region "A" does not extend indefinitely

and, if the receiver is located too far away, the Jet will have dispersed

so that high flow recovery is impossible.
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APP_DIX C

Gloe.qary of Symbols and Subscripts

Symbols Subscripts

A - Area, in 2 1 - power stage

Cd - Flow Discharge C_fficient 2 - control stage

C2 - Thermodynamic Gas Constant, °R1/21sec a - ambient

D - DiIter, in. ann- anuulus

F - Fuel B - button

fl - Orifice Flow Function b - bias

g - gravitational Acceleration, in/see 2 bl - bleed

H2 - Hydrogen Gas c - control

H2-0 2 - Specified Hot Gas d - discharge, downstream

HOGG3- Task 2 Control Stage Gas Generator ex - exhaust

HOGG4- Task 2 Power StaKe Gas Generator g - generator

k - Ratio of Specific Heats h - hot, hydrogen

L - Length i - inlet

,
L - Characteristic Length max - maxlm, m

M - Molecular Weight n - nitrogen

N2 - Nitrogen Gas o - outlet, oxygen

0 - Oxidizer p - power

02 - Oxygen Gas r - receiver

P - Pressure, psi s - supply

R - Gu Constant, :ln/°R t - total

R* - Universal Gas Constant, in-lb/lb-nole-eR u - upstreI

T - Temperature, °R

V -Volume, in3; Velocity, in/set

VA2 - Task 1 Power Stage Vortex Amplifier
i

VA4M2 - Task 1 Control Stage Vortex Amplifier

VA5 - Task 3 Control Stage Vortex Amplifier

VA6 - Task 3 Power Stage Vortex Amplifier

- Weight Flow, lb/mec

X - Spacins, in.
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