35 research outputs found

    The Multi-Level Action of Fatty Acids on Adiponectin Production by Fat Cells

    Get PDF
    Current epidemics of diabetes mellitus is largely caused by wide spread obesity. The best-established connection between obesity and insulin resistance is the elevated and/or dysregulated levels of circulating free fatty acids that cause and aggravate insulin resistance, type 2 diabetes, cardiovascular disease and other hazardous metabolic conditions. Here, we investigated the effect of a major dietary saturated fatty acid, palmitate, on the insulin-sensitizing adipokine adiponectin produced by cultured adipocytes. We have found that palmitate rapidly inhibits transcription of the adiponectin gene and the release of adiponectin from adipocytes. Adiponectin gene expression is controlled primarily by PPARγ and C/EBPα. Using mouse embryonic fibroblasts from C/EBPα-null mice, we have determined that the latter transcription factor may not solely mediate the inhibitory effect of palmitate on adiponectin transcription leaving PPARγ as a likely target of palmitate. In agreement with this model, palmitate increases phosphorylation of PPARγ on Ser273, and substitution of PPARγ for the unphosphorylated mutant Ser273Ala blocks the effect of palmitate on adiponectin transcription. The inhibitory effect of palmitate on adiponectin gene expression requires its intracellular metabolism via the acyl-CoA synthetase 1-mediated pathway. In addition, we found that palmitate stimulates degradation of intracellular adiponectin by lysosomes, and the lysosomal inhibitor, chloroquine, suppressed the effect of palmitate on adiponectin release from adipocytes. We present evidence suggesting that the intracellular sorting receptor, sortilin, plays an important role in targeting of adiponectin to lysosomes. Thus, palmitate not only decreases adiponectin expression at the level of transcription but may also stimulate lysosomal degradation of newly synthesized adiponectin

    High-power picosecond pulses by SPM-induced spectral compression in a fiber amplifier

    No full text
    The fiber based generation of nearly transform-limited 10-ps pulses with 200 kW peak power (97 W average power) based on SPM-induced spectral compression is reported. Efficient second harmonic generation applying this source is also discussed

    Evaluation of symptomatic drug effects in Alzheimer's disease: strategies for prediction of efficacy in humans.

    No full text
    In chronic diseases such as Alzheimer's disease (AD), the arsenal of biomarkers available to determine the effectiveness of symptomatic treatment is very limited. Interpretation of the results provided in literature is cumbersome and it becomes difficult to predict their standardization to a larger patient population. Indeed, cognitive assessment alone does not appear to have sufficient predictive value of drug efficacy in early clinical development of AD treatment. In recent years, research has contributed to the emergence of new tools to assess brain activity relying on innovative technologies of imaging and electrophysiology. However, the relevance of the use of these newer markers in treatment response assessment is waiting for validation. This review shows how the early clinical assessment of symptomatic drugs could benefit from the inclusion of suitable pharmacodynamic markers. This review also emphasizes the importance of re-evaluating a step-by-step strategy in drug development
    corecore