808 research outputs found

    Excitation of plasma resonances by a small pulsed dipole

    Get PDF
    Resonant oscillation decay excited by pulsed dipole in collisionless plasm

    Monitoring vegetation conditions from LANDSAT for use in range management

    Get PDF
    A summary of the LANDSAT Great Plains Corridor projects and the principal results are presented. Emphasis is given to the use of satellite acquired phenological data for range management and agri-business activities. A convenient method of reducing LANDSAT MSS data to provide quantitative estimates of green biomass on rangelands in the Great Plains is explained. Suggestions for the use of this approach for evaluating range feed conditions are presented. A LANDSAT Follow-on project has been initiated which will employ the green biomass estimation method in a quasi-operational monitoring of range readiness and range feed conditions on a regional scale

    Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation

    Get PDF
    The author has identified the following significant results. The Great Plains Corridor rangeland project utilizes natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. A method has been developed for quantitative measurement of vegetation conditions over broad regions using ERTS-1 MSS data. Radiance values recorded in ERTS-1 spectral bands 5 and 7, corrected for sun angle, are used to compute a band ratio parameter which is shown to be correlated with green biomass and vegetation moisture content. This report details the progress being made toward determining factors associated with the transformed vegetation index (TVI) and limitations on the method. During the first year of ERTS-1 operation (cycles 1-20), an average of 50% usable ERTS-1 data was obtained for the ten Great Plains Corridor test sites

    Monitoring vegetation systems in the Great Plains with ERTS

    Get PDF
    The Great Plains Corridor rangeland project utilizes natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. A method has been developed for quantitative measurement of vegetation conditions over broad regions using ERTS-1 MSS data. Radiance values recorded in ERTS-1 spectral bands 5 and 7, corrected for sun angle, are used to compute a band ratio parameter which is shown to be correlated with aboveground green biomass on rangelands

    Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation

    Get PDF
    The author has identified the following significant results. The Great Plains Corridor rangeland project successfully utilized natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. An effective method was developed for quantitative measurement of vegetation conditions, including green biomass estimates, recorded in bands 5 and 6, corrected for sun angle, were used to compute a ratio parameter (TV16) which is shown to be highly correlated with green biomass and vegatation moisture content. Analyses results of ERTS-1 digital data and correlated ground data are summarized. Attention was given to analyzing weather influences and test site variables on vegetation condition measurements with ERTS-1 data

    Analysis of Performance of Dynamic Multicast Routing Algorithms

    Full text link
    In this paper, three new dynamic multicast routing algorithms based on the greedy tree technique are proposed; Source Optimised Tree, Topology Based Tree and Minimum Diameter Tree. A simulation analysis is presented showing various performance aspects of the algorithms, in which a comparison is made with the greedy and core based tree techniques. The effects of the tree source location on dynamic membership change are also examined. The simulations demonstrate that the Source Optimised Tree algorithm achieves a significant improvement in terms of delay and link usage when compared to the Core Based Tree, and greedy algorithm

    Applied regional monitoring of the vernal advancement and retrogradation (green wave effect) of natural vegetation in the Great Plains corridor

    Get PDF
    The author has identified the following significant results. Rangelands in southwest Texas were used to establish threshold values and limitations on measuring herbaceous biomass under typical arid and semi-arid range conditions. Previous regression relationships established between ND6 and green biomass for two different ecosystems were similar. The west Texas data set for brush-free sites was too small to be statistically conclusive. It appears that a line with a third (and steeper) slope would be best for the west Texas data, and that line would intersect the other two. Results show that similar relationships exist between ND6 and green biomass under low brush canopy cover conditions, but local variations require a calibration to determine the best fit for an ecosystem. The brush canopy has a detrimental effect on the ND6 vs. herbaceous green biomass relationship

    Applied regional monitoring of the vernal advancement and retrogradation (Green wave effect) of natural vegetation in the Great Plains corridor

    Get PDF
    The author has identified the following significant results. LANDSAT 2 has shown that digital data products can be effectively employed on a regional basis to monitor changes in vegetation conditions. The TV16 was successfully applied to an extended test site and the Great Plains Corridor in tests of the ability to assess green forage biomass on rangelands as an index to vegetation condition. A strategy for using TV16 on a regional basis was developed and tested. These studies have shown that: (1) for rangelands with good vegetative cover, such as most of the Great Plains, and which are not heavily infested with brush or undesirable weed species, the LANDSAT digital data can provide a good estimate (within 250 kg/ha) of the quantity of green forage biomass, and (2) at least five levels of pasture and range feed conditions can be adequately mapped for extended regions

    Ethical issues related to brain organoid research

    Get PDF
    This review provides a snapshot of the current ethical issues related to research with human brain organoids. The issues fall into the following main themes: research oversight; human biomaterials procurement and donor consent; translational delivery; animal research; and organoid consciousness and moral status. Each of these areas poses challenges for researchers, bioethicists, regulators, research institutions, and tissue banks. However, progress can be made if these parties build on past experiences with stem cell research, ethics, and policy, but adapted accordingly to new aspects of brain organoid research

    Sources of Hydrothermal Fluids Inferred from Oxygen and Carbon Isotope Composition of Calcite, Keweenaw Peninsula Native Copper District, Michigan, USA

    Get PDF
    The Mesoproterozoic North American Midcontinent Rift hosts the worldā€™s largest accu-mulation of native copper in Michiganā€™s Keweenaw Peninsula. During a regional metamorpho-genicā€hydrothermal event, native copper was deposited along with spatially zoned mainā€stage minerals in a thermal high. This was followed by deposition of lateā€stage minerals including minor copper sulfide. Inferences from the oxygen and carbon isotopic composition of mainā€stage hydrothermal fluids, as calculated from 296 new and compiled isotopic measurements on calcite, are consistent with existing models that lowā€sulfur saline native copper oreā€forming fluids were domi-nantly derived by burial metamorphic processes from the very low sulfur basaltā€dominated rift fill at depth below the native copper deposits. Coā€variation of oxygen and carbon isotopic compositions are consistent with mixing of metamorphicā€derived fluids with two additional isotopically different fluids. One of these is proposed to be evolved seawater that provided an outside source of salinity. This fluid mixed at depth and participated in the formation of a wellā€mixed hybrid metamorphic-dominated oreā€forming fluid. Secondary Ion Mass Spectrometry inā€situ isotopic analyses of calcite demonstrate a high degree of variability within samples that is attributed to variable degrees of shallow mixing of the hybrid oreā€forming fluid with sulfurā€poor, reduced evolved meteoric water in the zone of precipitation. The oxygen and carbon isotopic compositions of 100 new and compiled measurements on lateā€stage calcite are mostly isotopically different than the mainā€stage hydrothermal fluids. The lateā€stage hydrothermal fluids are interpreted as various proportions of mixing of evolved meteoric water, mainā€stage hybrid oreā€forming fluid, and shallow, evolved seawater in the relatively shallow zone of precipitation
    • ā€¦
    corecore