88 research outputs found

    Minimally invasive scoliosis surgery: an innovative technique in patients with adolescent idiopathic scoliosis

    Get PDF
    Minimally invasive spine surgery is becoming more common in the treatment of adult lumbar degenerative disorders. Minimally invasive techniques have been utilized for multilevel pathology, including adult lumbar degenerative scoliosis. The next logical step is to apply minimally invasive surgical techniques to the treatment of adolescent idiopathic scoliosis (AIS). However, there are significant technical challenges of performing minimally invasive surgery on this patient population. For more than two years, we have been utilizing minimally invasive spine surgery techniques in patients with adolescent idiopathic scoliosis. We have developed the present technique to allow for utilization of all standard reduction maneuvers through three small midline skin incisions. Our technique allows easy passage of contoured rods, placement of pedicle screws without image guidance, and allows adequate facet osteotomy to enable fusion. There are multiple potential advantages of this technique, including: less blood loss, shorter hospital stay, earlier mobilization, and relatively less pain and need for pain medication. The operative time needed to complete this surgery is longer. We feel that a minimally invasive approach, although technically challenging, is a feasible option in patients with adolescent idiopathic scoliosis. Although there are multiple perceived benefits, long term data is needed before it can be recommended for routine use

    Lysine-based surfactants in nanovesicle formulations: the role of cationic charge position and hydrophobicity in in vitro cytotoxicity and intracellular delivery

    Get PDF
    Understanding nanomaterial interactions within cells is of increasing importance for assessing their toxicity and cellular transport. Here, we developed nanovesicles containing bioactive cationic lysine-based amphiphiles, and assessed whether these cationic compounds increase the likelihood of intracellular delivery and modulate toxicity. We found different cytotoxic responses among the formulations, depending on surfactant, cell line and endpoint assayed. The induction of mitochondrial dysfunction, oxidative stress and apoptosis were the general mechanisms underlying cytotoxicity. Fluorescence microscopy analysis demonstrated that nanovesicles were internalized by HeLa cells, and evidenced that their ability to release endocytosed materials into cell cytoplasm depends on the structural parameters of amphiphiles. The cationic charge position and hydrophobicity of surfactants determine the nanovesicle interactions within the cell and, thus, the resulting toxicity and intracellular behavior after cell uptake of the nanomaterial. The insights into some toxicity mechanisms of these new nanomaterials contribute to reducing the uncertainty surrounding their potential health hazards
    • …
    corecore