306 research outputs found

    Long-Term Potentiation: One Kind or Many?

    Get PDF
    Do neurobiologists aim to discover natural kinds? I address this question in this chapter via a critical analysis of classification practices operative across the 43-year history of research on long-term potentiation (LTP). I argue that this 43-year history supports the idea that the structure of scientific practice surrounding LTP research has remained an obstacle to the discovery of natural kinds

    In-Silico Patterning of Vascular Mesenchymal Cells in Three Dimensions

    Get PDF
    Cells organize in complex three-dimensional patterns by interacting with proteins along with the surrounding extracellular matrix. This organization provides the mechanical and chemical cues that ultimately influence a cell's differentiation and function. Here, we computationally investigate the pattern formation process of vascular mesenchymal cells arising from their interaction with Bone Morphogenic Protein-2 (BMP-2) and its inhibitor, Matrix Gla Protein (MGP). Using a first-principles approach, we derive a reaction-diffusion model based on the biochemical interactions of BMP-2, MGP and cells. Simulations of the model exhibit a wide variety of three-dimensional patterns not observed in a two-dimensional analysis. We demonstrate the emergence of three types of patterns: spheres, tubes, and sheets, and show that the patterns can be tuned by modifying parameters in the model such as the degradation rates of proteins and chemotactic coefficient of cells. Our model may be useful for improved engineering of three-dimensional tissue structures as well as for understanding three dimensional microenvironments in developmental processes.National Institutes of Health (U.S.) (GM69811)United States. Dept. of Energy (DOE CSGF fellowship

    Deletion of PEA-15 in mice is associated with specific impairments of spatial learning abilities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PEA-15 is a phosphoprotein that binds and regulates ERK MAP kinase and RSK2 and is highly expressed throughout the brain. PEA-15 alters c-Fos and CREB-mediated transcription as a result of these interactions. To determine if PEA-15 contributes to the function of the nervous system we tested mice lacking PEA-15 in a series of experiments designed to measure learning, sensory/motor function, and stress reactivity.</p> <p>Results</p> <p>We report that PEA-15 null mice exhibited impaired learning in three distinct spatial tasks, while they exhibited normal fear conditioning, passive avoidance, egocentric navigation, and odor discrimination. PEA-15 null mice also had deficient forepaw strength and in limited instances, heightened stress reactivity and/or anxiety. However, these non-cognitive variables did not appear to account for the observed spatial learning impairments. The null mice maintained normal weight, pain sensitivity, and coordination when compared to wild type controls.</p> <p>Conclusion</p> <p>We found that PEA-15 null mice have spatial learning disabilities that are similar to those of mice where ERK or RSK2 function is impaired. We suggest PEA-15 may be an essential regulator of ERK-dependent spatial learning.</p

    High-Throughput Sequencing of mGluR Signaling Pathway Genes Reveals Enrichment of Rare Variants in Autism

    Get PDF
    Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism

    Integrating the Hierarchical Taxonomy of Psychopathology (HiTOP) Into Clinical Practice

    Get PDF
    Objective: Diagnosis is a cornerstone of clinical practice for mental health care providers, yet traditional diagnostic systems have well-known shortcomings, including inadequate reliability, high comorbidity, and marked within-diagnosis heterogeneity. The Hierarchical Taxonomy of Psychopathology (HiTOP) is a data-driven, hierarchically based alternative to traditional classifications that conceptualizes psychopathology as a set of dimensions organized into increasingly broad, transdiagnostic spectra. Prior work has shown that using a dimensional approach improves reliability and validity, but translating a model like HiTOP into a workable system that is useful for health care providers remains a major challenge. / Method: The present work outlines the HiTOP model and describes the core principles to guide its integration into clinical practice. Results: Potential advantages and limitations of the HiTOP model for clinical utility are reviewed, including with respect to case conceptualization and treatment planning. A HiTOP approach to practice is illustrated and contrasted with an approach based on traditional nosology. Common barriers to using HiTOP in real-world health care settings and solutions to these barriers are discussed. / Conclusions: HiTOP represents a viable alternative to classifying mental illness that can be integrated into practice today, although research is needed to further establish its utility

    Criterion A of the AMPD in HiTOP

    Get PDF
    The categorical model of personality disorder classification in the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders (5th ed. [DSM-5]; American Psychiatric Association, 2013) is highly and fundamentally problematic. Proposed for DSM-5 and provided within Section III (for Emerging Measures and Models) was the Alternative Model of Personality Disorder (AMPD) classification, consisting of Criterion A (self-interpersonal deficits) and Criterion B (maladaptive personality traits). A proposed alternative to the DSM-5 more generally is an empirically based dimensional organization of psychopathology identified as the Hierarchical Taxonomy of Psychopathology (HiTOP; Kotov etal., 2017). HiTOP currently includes, at the highest level, a general factor of psychopathology. Further down are the five domains of detachment, antagonistic externalizing, disinhibited externalizing, thought disorder, and internalizing (along with a provisional sixth somatoform dimension) that align with Criterion B. The purpose of this article is to discuss the potential inclusion and placement of the self-interpersonal deficits of the DSM-5 Section III Criterion A within HiTOP

    Genome-Wide DNA Methylation Scan in Major Depressive Disorder

    Get PDF
    While genome-wide association studies are ongoing to identify sequence variation influencing susceptibility to major depressive disorder (MDD), epigenetic marks, such as DNA methylation, which can be influenced by environment, might also play a role. Here we present the first genome-wide DNA methylation (DNAm) scan in MDD. We compared 39 postmortem frontal cortex MDD samples to 26 controls. DNA was hybridized to our Comprehensive High-throughput Arrays for Relative Methylation (CHARM) platform, covering 3.5 million CpGs. CHARM identified 224 candidate regions with DNAm differences >10%. These regions are highly enriched for neuronal growth and development genes. Ten of 17 regions for which validation was attempted showed true DNAm differences; the greatest were in PRIMA1, with 12–15% increased DNAm in MDD (p = 0.0002–0.0003), and a concomitant decrease in gene expression. These results must be considered pilot data, however, as we could only test replication in a small number of additional brain samples (n = 16), which showed no significant difference in PRIMA1. Because PRIMA1 anchors acetylcholinesterase in neuronal membranes, decreased expression could result in decreased enzyme function and increased cholinergic transmission, consistent with a role in MDD. We observed decreased immunoreactivity for acetylcholinesterase in MDD brain with increased PRIMA1 DNAm, non-significant at p = 0.08

    Impulsivity and self-harm in adolescence: a systematic review

    Get PDF
    Research supports an association between impulsivity and self-harm, yet inconsistencies in methodology across studies have complicated understanding of this relationship. This systematic review examines the association between impulsivity and self-harm in community-based adolescents aged 11-25 years and aims to integrate findings according to differing concepts and methods. Electronic searches of EMBASE, MEDLINE, PsychINFO, CINAHL, PubMed and The Cochrane Library, and manual searches of reference lists of relevant reviews, identified 4,496 articles published up to July 2015, of which 28 met inclusion criteria. Twenty-four of the studies reported an association between broadly specified impulsivity and self-harm. However, findings varied according to the conception and measurement of impulsivity and the precision with which self-harm behaviours were specified. Specifically, lifetime non-suicidal self-injury was most consistently associated with mood-based impulsivity related traits. However, cognitive facets of impulsivity (relating to difficulties maintaining focus or acting without forethought) differentiated current self-harm from past self-harm. These facets also distinguished those with thoughts of self-harm (ideation) from those who acted on thoughts (enaction). The findings suggested that mood-based impulsivity is related to the initiation of self-harm, while cognitive facets of impulsivity are associated with the maintenance of self-harm. In addition, behavioural impulsivity is most relevant to self-harm under conditions of negative affect. Collectively, the findings indicate that distinct impulsivity facets confer unique risks across the life-course of self-harm. From a clinical perspective, the review suggests that interventions focusing on reducing rash reactivity to emotions or improving self-regulation and decision-making may offer most benefit in supporting those who self-harm
    • …
    corecore