50 research outputs found

    Genome-wide scan identifies novel genetic loci regulating salivary metabolite levels.

    Get PDF
    Saliva, as a biofluid, is inexpensive and non-invasive to obtain, and provides a vital tool to investigate oral health and its interaction with systemic health conditions. There is growing interest in salivary biomarkers for systemic diseases, notably cardiovascular disease. Whereas hundreds of genetic loci have been shown to be involved in the regulation of blood metabolites, leading to significant insights into the pathogenesis of complex human diseases, little is known about the impact of host genetics on salivary metabolites. Here we report the first genome-wide association study exploring 476 salivary metabolites in 1419 subjects from the TwinsUK cohort (discovery phase), followed by replication in the Study of Health in Pomerania (SHIP-2) cohort. A total of 14 distinct locus-metabolite associations were identified in the discovery phase, most of which were replicated in SHIP-2. While only a limited number of the loci that are known to regulate blood metabolites were also associated with salivary metabolites in our study, we identified several novel saliva-specific locus-metabolite associations, including associations for the AGMAT (with the metabolites 4-guanidinobutanoate and beta-guanidinopropanoate), ATP13A5 (with the metabolite creatinine) and DPYS (with the metabolites 3-ureidopropionate and 3-ureidoisobutyrate) loci. Our study suggests that there may be regulatory pathways of particular relevance to the salivary metabolome. In addition, some of our findings may have clinical significance, such as the utility of the pyrimidine (uracil) degradation metabolites in predicting 5-fluorouracil toxicity and the role of the agmatine pathway metabolites as biomarkers of oral health

    Genetics of randomly bred cats support the cradle of cat domestication being in the Near East

    Get PDF
    Cat domestication likely initiated as a symbiotic relationship between wildcats (Felis silvestris subspecies) and the peoples of developing agrarian societies in the Fertile Crescent. As humans transitioned from hunter-gatherers to farmers ~12,000 years ago, bold wildcats likely capitalized on increased prey density (i.e., rodents). Humans benefited from the cats’ predation on these vermin. To refine the site(s) of cat domestication, over 1000 random-bred cats of primarily Eurasian descent were genotyped for single-nucleotide variants and short tandem repeats. The overall cat population structure suggested a single worldwide population with significant isolation by the distance of peripheral subpopulations. The cat population heterozygosity decreased as genetic distance from the proposed cat progenitor’s (F.s. lybica) natural habitat increased. Domestic cat origins are focused in the eastern Mediterranean Basin, spreading to nearby islands, and southernly via the Levantine coast into the Nile Valley. Cat population diversity supports the migration patterns of humans and other symbiotic species

    Bayesian reassessment of the epigenetic architecture of complex traits

    Get PDF
    Linking epigenetic marks to clinical outcomes improves insight into molecular processes, disease prediction, and therapeutic target identification. Here, a statistical approach is presented to infer the epigenetic architecture of complex disease, determine the variation captured by epigenetic effects, and estimate phenotype-epigenetic probe associations jointly. Implicitly adjusting for probe correlations, data structure (cell-count or relatedness), and single-nucleotide polymorphism (SNP) marker effects, improves association estimates and in 9,448 individuals, 75.7% (95% CI 71.70–79.3) of body mass index (BMI) variation and 45.6% (95% CI 37.3–51.9) of cigarette consumption variation was captured by whole blood methylation array data. Pathway-linked probes of blood cholesterol, lipid transport and sterol metabolism for BMI, and xenobiotic stimuli response for smoking, showed >1.5 times larger associations with >95% posterior inclusion probability. Prediction accuracy improved by 28.7% for BMI and 10.2% for smoking over a LASSO model, with age-, and tissue-specificity, implying associations are a phenotypic consequence rather than causal

    Applications and efficiencies of the first cat 63K DNA array

    Get PDF
    Correction, Volume: 8 Article Number: 8746 DOI: 10.1038/s41598-018-26885-5 Published: JUN 4 2018The development of high throughput SNP genotyping technologies has improved the genetic dissection of simple and complex traits in many species including cats. The properties of feline 62,897 SNPs Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the most extensive to date, representing 41 cat breeds, a random bred population, and four wild felid species. Accuracy and efficiency of the array's genotypes and its utility in performing population-based analyses were evaluated. Average marker distance across the array was 37,741 Kb, and across the dataset, only 1% (625) of the markers exhibited poor genotyping and only 0.35% (221) showed Mendelian errors. Marker polymorphism varied across cat breeds and the average minor allele frequency (MAF) of all markers across domestic cats was 0.21. Population structure analysis confirmed a Western to Eastern structural continuum of cat breeds. Genome-wide linkage disequilibrium ranged from 50-1,500 Kb for domestic cats and 750 Kb for European wildcats (Felis silvestris silvestris). Array use in trait association mapping was investigated under different modes of inheritance, selection and population sizes. The efficient array design and cat genotype dataset continues to advance the understanding of cat breeds and will support monogenic health studies across feline breeds and populations.Peer reviewe

    Pneumolysin promotes host cell necroptosis and bacterial competence during pneumococcal meningitis as shown by whole-animal dual RNA-seq.

    No full text
    Pneumolysin is a major virulence factor of Streptococcus pneumoniae that plays a key role in interaction with the host during invasive disease. How pneumolysin influences these dynamics between host and pathogen interaction during early phase of central nervous system infection in pneumococcal meningitis remains unclear. Using a whole-animal in vivo dual RNA sequencing (RNA-seq) approach, we identify pneumolysin-specific transcriptional responses in both S. pneumoniae and zebrafish (Danio rerio) during early pneumococcal meningitis. By functional enrichment analysis, we identify host pathways known to be activated by pneumolysin and discover the importance of necroptosis for host survival. Inhibition of this pathway using the drug GSK'872 increases host mortality during pneumococcal meningitis. On the pathogen's side, we show that pneumolysin-dependent competence activation is crucial for intra-host replication and virulence. Altogether, this study provides new insights into pneumolysin-specific transcriptional responses and identifies key pathways involved in pneumococcal meningitis

    Epigenetic findings in periodontitis in UK twins: a cross-sectional study

    Get PDF
    Abstract Background Genetic and environmental risk factors contribute to periodontal disease, but the underlying susceptibility pathways are not fully understood. Epigenetic mechanisms are malleable regulators of gene function that can change in response to genetic and environmental stimuli, thereby providing a potential mechanism for mediating risk effects in periodontitis. The aim of this study is to identify epigenetic changes across tissues that are associated with periodontal disease. Methods Self-reported gingival bleeding and history of gum disease, or tooth mobility, were used as indicators of periodontal disease. DNA methylation profiles were generated using the Infinium HumanMethylation450 BeadChip in whole blood, buccal, and adipose tissue samples from predominantly older female twins (mean age 58) from the TwinsUK cohort. Epigenome-wide association scans (EWAS) of gingival bleeding and tooth mobility were conducted in whole blood in 528 and 492 twins, respectively. Subsequently, targeted candidate gene analysis at 28 genomic regions was carried out testing for phenotype-methylation associations in 41 (tooth mobility) and 43 (gingival bleeding) buccal, and 501 (tooth mobility) and 556 (gingival bleeding) adipose DNA samples. Results Epigenome-wide analyses in blood identified one CpG-site (cg21245277 in ZNF804A) associated with gingival bleeding (FDR = 0.03, nominal p value = 7.17e−8) and 58 sites associated with tooth mobility (FDR < 0.05) with the top signals in IQCE and XKR6. Epigenetic variation at 28 candidate regions (247 CpG-sites) for chronic periodontitis showed an enrichment for association with periodontal traits, and signals in eight genes (VDR, IL6ST, TMCO6, IL1RN, CD44, IL1B, WHAMM, and CXCL1) were significant in both traits. The methylation-phenotype association signals validated in buccal samples, and a subset (25%) also validated in adipose tissue. Conclusions Epigenome-wide analyses in adult female twins identified specific DNA methylation changes linked to self-reported periodontal disease. Future work will explore the environmental basis and functional impact of these results to infer potential for strategic personalized treatments and prevention of chronic periodontitis
    corecore