155 research outputs found

    Isotope shifts and hyperfine structure of the Fe I 372 nm resonance line

    Full text link
    We report measurements of the isotope shifts of the 3d64s2a5D43d64s4pz5F5o3d^64s^2 a ^5D_4 - 3d^64s4p z ^5F_5^o Fe I resonance line at 372 nm between all four stable isotopes 54^{54}Fe, 56^{56}Fe, 57^{57}Fe, and 58^{58}Fe, as well as the complete hyperfine structure of that line for 57^{57}Fe, the only stable isotope having a non-zero nuclear spin. The field and specific mass shift coefficients of the transition have been derived from the data, as well as the experimental value for the hyperfine structure magnetic dipole coupling constant AA of the excited state of the transition in 57^{57}Fe: A(3d64s4pz5F5o)=81.69(86)A(3d^64s4p z ^5F_5^o) = 81.69(86) MHz. The measurements were done by means of Doppler-free laser saturated-absorption spectroscopy in a Fe-Ar hollow cathode using both natural and enriched iron samples. The measured isotope shifts and hyperfine constants are reported with uncertainties at the percent level.Comment: 5 pages, 5 figure

    Effects of prosodically modulated sub-phonetic variation on lexical competition

    Get PDF
    Eye movements were monitored as participants followed spoken instructions to manipulate one of four objects pictured on a computer screen. Target words occurred in utterance-medial (e.g., Put the cap next to the square) or utterance-final position (e.g., Now click on the cap). Displays consisted of the target picture (e.g., a cap), a monosyllabic competitor picture (e.g., a cat), a polysyllabic competitor picture (e.g., a captain) and a distractor (e.g., a beaker). The relative proportion of fixations to the two types of competitor pictures changed as a function of the position of the target word in the utterance, demonstrating that lexical competition is modulated by prosodically conditioned phonetic variation

    Protective effects of hydrogen-rich saline on monocrotaline-induced pulmonary hypertension in a rat model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydrogen-rich saline has been reported to have antioxidant and anti-inflammatory effects and effectively protect against organ damage. Oxidative stress and inflammation contribute to the pathogenesis and/or development of pulmonary hypertension. In this study, we investigated the effects of hydrogen-rich saline on the prevention of pulmonary hypertension induced by monocrotaline in a rat model.</p> <p>Methods</p> <p>In male Sprague-Dawley rats, pulmonary hypertension was induced by subcutaneous administration of monocrotaline at a concentration of 6 mg/100 g body weight. Hydrogen-rich saline (5 ml/kg) or saline was administred intraperitoneally once daily for 2 or 3 weeks. Severity of pulmonary hypertension was assessed by hemodynamic index and histologic analysis. Malondialdehyde and 8-hydroxy-desoxyguanosine level, and superoxide dismutase activity were measured in the lung tissue and serum. Levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6) in serum were determined with enzyme-linked immunosorbent assay.</p> <p>Results</p> <p>Hydrogen-rich saline treatment improved hemodynamics and reversed right ventricular hypertrophy. It also decreased malondialdehyde and 8-hydroxy-desoxyguanosine levels, and increased superoxide dismutase activity in the lung tissue and serum, accompanied by a decrease in pro-inflammatory cytokines.</p> <p>Conclusions</p> <p>These results suggest that hydrogen-rich saline ameliorates the progression of pulmonary hypertension induced by monocrotaline in rats, which may be associated with its antioxidant and anti-inflammatory effects.</p

    Gonadotropin-releasing hormone increased pregnancy risk in suckled beef cows not detected in estrus and subjected to a split-time artificial insemination program

    Get PDF
    Citation: Hill, S. L., Grieger, D. M., Olson, K. C., Jaeger, J. R., Dahlen, C. R., Crosswhite, M. R., . . . Stevenson, J. S. (2016). Gonadotropin-releasing hormone increased pregnancy risk in suckled beef cows not detected in estrus and subjected to a split-time artificial insemination program. Journal of Animal Science, 94(9), 3722-3728. doi:10.2527/jas2016-0582We hypothesized that GnRH would increase pregnancy risk (PR) in a split-time AI program for cows in which estrus was not detected. A total of 1,236 suckled beef cows at 12 locations in 3 states (Colorado, Kansas, and North Dakota) were enrolled. Before applying the fixed-time AI program, BCS was assessed. Cows were treated on d -7 with a progesterone insert concurrent with 100 mu g GnRH and on d 0 with 25 mg PGF(2 alpha) plus removal of the insert. Estrus-detection patches were affixed to cows at insert removal. Estrus was defined to have occurred when an estrus-detection patch was >50% colored (activated). Cows in estrus by 65 h (n = 758; 61.3% of all cows) were randomly allocated to 2 treatments: 1) 100 mu g GnRH and early + GnRH (E+G; n = 373) or 2) AI only at 65 h (early -no GnRH [E-G]; n = 385). The remaining cows were randomly allocated to 2 treatments: 1) 5(L+G; n = 252) or 2) AI only at 84 h (late no GnRH [L-G]; n = 226). Pregnancy was determined 35 d after AI via transrectal ultrasound. Pregnancy risk did not differ (P = 0.68) between E+G and E-G cows (61.9 vs. 60.4%, respectively). Conversely, for cows inseminated at 84 h, PR was greater (P = 0.01) in cows that received GnRH (L+G) compared with their herd mates not receiving GnRH (L-G; 41.7 vs. 30.8%, respectively). Of those cows not detected in estrus by 65 h, 42.1% were detected by 84 h, for a total expression of estrus by all cows of 77.6%. Administration of GnRH increased (P < 0.01) PR in cows not detected in estrus by 84 h (+ GnRH = 33.4% [n = 146] vs. no GnRH = 15.0% [n = 128]) but had no effect in cows expressing estrus by 84 h (+ GnRH = 65.3% [n = 103] vs. no GnRH = 61.7% [n = 97]). Neither estrus expression by 65 or 84 h nor PR was influenced by BCS, parity, or days postpartum at AI. Cows had greater PR when they had been detected in estrus before AI, and PR was improved by administration of GnRH at 65 h after insert removal in cows that were not detected in estrus and inseminated at 84 h

    Gonadotropin-Releasing Hormone Increased Pregnancy in Suckled Beef Cows Not Detected in Estrus and Subjected to a Split-Time Artificial Insemination Program

    Get PDF
    Estrus-synchronization programs allow insemination of all females in a herd at one fixed time on the first day of the breeding season. Inseminating cows after they have expressed estrus increases pregnancy rate (PR) compared with cows that do not display estrus in a timed AI (TAI) program. Identification of estrus status can be facilitated by using estrus-detection patches. Varying AI timing according to estrus status has increased PR in some previous studies. Reducing the number of injections in a TAI program decreases labor requirements, stress on cows, and overall cost of the program. Previous studies have demonstrated that PR is not compromised in cows displaying estrus when the GnRH injection administered at AI is eliminated. A split-time AI program decreases the time between estrus expression and insemination compared with a single fixed-time AI when the first AI occurs before the recommended standard 60- to 66-h fixed time. Previous research has demonstrated that delaying AI results in approxi­mately 50% more cows displaying estrus when compared with a single insemination time. Eliminating the GnRH injection at AI for cows displaying estrus in a split TAI program can reduce the number of GnRH injections required and the program cost. The objective of this study was to test the hypothesis that GnRH injection concurrent with split TAI program improves PR only in cows not displaying estrus

    Carbon fluxes resulting from land-use changes in the Tamaulipan thornscrub of northeastern Mexico

    Get PDF
    Information on carbon stock and flux resulting from land-use changes in subtropical, semi-arid ecosystems are important to understand global carbon flux, yet little data is available. In the Tamaulipan thornscrub forests of northeastern Mexico, biomass components of standing vegetation were estimated from 56 quadrats (200 m2 each). Regional land-use changes and present forest cover, as well as estimates of soil organic carbon from chronosequences, were used to predict carbon stocks and fluxes in this ecosystem

    Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats

    Get PDF
    Background: Mast cells (MCs) are implicated in inflammation and tissue remodeling. Accumulation of lung MCs is described in pulmonary hypertension (PH); however, whether MC degranulation and c-kit, a tyrosine kinase receptor critically involved in MC biology, contribute to the pathogenesis and progression of PH has not been fully explored.Methods: Pulmonary MCs of idiopathic pulmonary arterial hypertension (IPAH) patients and monocrotaline-injected rats (MCT-rats) were examined by histochemistry and morphometry. Effects of the specific c-kit inhibitor PLX and MC stabilizer cromolyn sodium salt (CSS) were investigated in MCT-rats both by the preventive and therapeutic approaches. Hemodynamic and right ventricular hypertrophy measurements, pulmonary vascular morphometry and analysis of pulmonary MC localization/counts/activation were performed in animal model studies.Results: There was a prevalence of pulmonary MCs in IPAH patients and MCT-rats as compared to the donors and healthy rats, respectively. Notably, the perivascular MCs were increased and a majority of them were degranulated in lungs of IPAH patients and MCT-rats (p < 0.05 versus donor and control, respectively). In MCT-rats, the pharmacological inhibitions of MC degranulation and c-kit with CSS and PLX, respectively by a preventive approach (treatment from day 1 to 21 of MCT-injection) significantly attenuated right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH). Moreover, vascular remodeling, as evident from the significantly decreased muscularization and medial wall thickness of distal pulmonary vessels, was improved. However, treatments with CSS and PLX by a therapeutic approach (from day 21 to 35 of MCT-injection) neither improved hemodynamics and RVH nor vascular remodeling.Conclusions: The accumulation and activation of perivascular MCs in the lungs are the histopathological features present in clinical (IPAH patients) and experimental (MCT-rats) PH. Moreover, the accumulation and activation of MCs in the lungs contribute to the development of PH in MCT-rats. Our findings reveal an important pathophysiological insight into the role of MCs in the pathogenesis of PH in MCT- rats
    corecore