703 research outputs found

    Fast Decoders for Topological Quantum Codes

    Full text link
    We present a family of algorithms, combining real-space renormalization methods and belief propagation, to estimate the free energy of a topologically ordered system in the presence of defects. Such an algorithm is needed to preserve the quantum information stored in the ground space of a topologically ordered system and to decode topological error-correcting codes. For a system of linear size L, our algorithm runs in time log L compared to L^6 needed for the minimum-weight perfect matching algorithm previously used in this context and achieves a higher depolarizing error threshold.Comment: 4 pages, 4 figure

    The role of oxygen vacancies on the structure and the density of states of iron doped zirconia

    Full text link
    In this paper we study, both with theoretical and experimental approach, the effect of iron doping in zirconia. Combining density functional theory (DFT) simulations with the experimental characterization of thin films, we show that iron is in the Fe3+ oxidation state and accordingly that the films are rich in oxygen vacancies (VO). VO favor the formation of the tetragonal phase in doped zirconia (ZrO2:Fe) and affect the density of state at the Fermi level as well as the local magnetization of Fe atoms. We also show that the Fe(2p) and Fe(3p) energy levels can be used as a marker for the presence of vacancies in the doped system. In particular the computed position of the Fe(3p) peak is strongly sensitive to the VO to Fe atoms ratio. A comparison of the theoretical and experimental Fe(3p) peak position suggests that in our films this ratio is close to 0.5. Besides the interest in the material by itself, ZrO2:Fe constitutes a test case for the application of DFT on transition metals embedded in oxides. In ZrO2:Fe the inclusion of the Hubbard U correction significantly changes the electronic properties of the system. However the inclusion of this correction, at least for the value U = 3.3 eV chosen in the present work, worsen the agreement with the measured photo-emission valence band spectra.Comment: 24 pages, 8 figure

    Taurus Tunable Filter -- seven years of observing

    Full text link
    The Taurus Tunable Filter (TTF) has now been in regular use for seven years on the Anglo-Australian Telescope. The instrument was also used for three years (1996--1999) on the William Herschel Telescope. We present a brief review of the different applications in order to illustrate the versatility of tunable filters in optical/IR spectrophotometric imaging. Tunable filters are now planned or are under development for 6-10m class telescopes which ensures their use for years to come.Comment: PASA, accepted. 20 pages, 9 figure

    Extensive counter-ion interactions seen at the surface of subtilisin in an aqueous medium

    Get PDF
    The extent of protein and counter-ion interactions in solution is still far from being fully described and understood. In low dielectric media there is documented evidence that counter-ions do bind and affect enzymatic activity. However, published crystal structures of macromolecules of biological interest in aqueous solution often do not report the presence of any counter-ions on the surface. The extent of counter-ion interactions within subtilisin in an aqueous medium has been investigated crystallographically using CsCl soak and X-ray wavelength optimised anomalous diffraction at the Cs K-edge. Ten Cs+, as well as six Cl- sites, have been clearly identified, revealing that in aqueous salt solutions ions can bind at defined points around the protein surface. The counter-ions do not generally interact with formal charges on the protein; formally neutral oxygens, mostly backbone carbonyls, mostly coordinate the Cs+ ions. The Cl- ion sites are also found likely to be near positive charges on the protein surface. The presence of counter-ions substantially changes the protein surface electrical charge. The surface charge distribution on a protein is commonly discussed in relation to enzyme function. The correct identification of counter-ions associated with a protein surface is necessary for a proper understanding of an enzyme's function

    The Antisocial Effects of Social Media and How Colleges and Universities Can Manage Related Litigation Risks

    Get PDF
    Rapid advancements in information technology have transformed day-to-day university operations and, in doing so, have altered the landscape of risk management. Authors Gregory L. Demers, J. William Piereson, Mark A. Cianci, and Peter L. Welsh provide an overview of some of the most significant social-media-related risks faced by colleges and universities, before considering ways to mitigate these risks through a broad insurance coverage plan. The article explains how, given the relative novelty of this field, the coverage afforded by insurance policies inevitably will vary, often significantly, from insurer to insurer

    Universal topological phase of 2D stabilizer codes

    Full text link
    Two topological phases are equivalent if they are connected by a local unitary transformation. In this sense, classifying topological phases amounts to classifying long-range entanglement patterns. We show that all 2D topological stabilizer codes are equivalent to several copies of one universal phase: Kitaev's topological code. Error correction benefits from the corresponding local mappings.Comment: 4 pages, 3 figure

    Semi-Teleparallel Theories of Gravitation

    Get PDF
    A class of theories of gravitation that naturally incorporates preferred frames of reference is presented. The underlying space-time geometry consists of a partial parallelization of space-time and has properties of Riemann-Cartan as well as teleparallel geometry. Within this geometry, the kinematic quantities of preferred frames are associated with torsion fields. Using a variational method, it is shown in which way action functionals for this geometry can be constructed. For a special action the field equations are derived and the coupling to spinor fields is discussed.Comment: 14 pages, LaTe

    When does cyclic dominance lead to stable spiral waves?

    Get PDF
    Species diversity in ecosystems is often accompanied by characteristic spatio-temporal patterns. Here, we consider a generic two-dimensional population model and study the spiraling patterns arising from the combined effects of cyclic dominance of three species, mutation, pair-exchange and individual hopping. The dynamics is characterized by nonlinear mobility and a Hopf bifurcation around which the system's four-phase state diagram is inferred from a complex Ginzburg-Landau equation derived using a perturbative multiscale expansion. While the dynamics is generally characterized by spiraling patterns, we show that spiral waves are stable in only one of the four phases. Furthermore, we characterize a phase where nonlinearity leads to the annihilation of spirals and to the spatially uniform dominance of each species in turn. Away from the Hopf bifurcation, when the coexistence fixed point is unstable, the spiraling patterns are also affected by the nonlinear diffusion

    Generalized parallel tempering on Bayesian inverse problems

    Get PDF
    Funder: Alexander von Humboldt-Stiftung; doi: http://dx.doi.org/10.13039/100005156In the current work we present two generalizations of the Parallel Tempering algorithm, inspired by the so-called continuous-time Infinite Swapping algorithm. Such a method, found its origins in the molecular dynamics community, and can be understood as the limit case of the continuous-time Parallel Tempering algorithm, where the (random) time between swaps of states between two parallel chains goes to zero. Thus, swapping states between chains occurs continuously. In the current work, we extend this idea to the context of time-discrete Markov chains and present two Markov chain Monte Carlo algorithms that follow the same paradigm as the continuous-time infinite swapping procedure. We analyze the convergence properties of such discrete-time algorithms in terms of their spectral gap, and implement them to sample from different target distributions. Numerical results show that the proposed methods significantly improve over more traditional sampling algorithms such as Random Walk Metropolis and (traditional) Parallel Tempering
    corecore