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Abstract

In the current work we present two generalizations of the Parallel Tempering algorithm in the context of discrete-time Markov
chain Monte Carlo methods for Bayesian inverse problems. These generalizations use state-dependent swapping rates, inspired
by the so-called continuous time Infinite Swapping algorithm presented in Plattner et al. (J Chem Phys 135(13):134111,2011).
We analyze the reversibility and ergodicity properties of our generalized PT algorithms. Numerical results on sampling from
different target distributions, show that the proposed methods significantly improve sampling efficiency over more traditional
sampling algorithms such as Random Walk Metropolis, preconditioned Crank—Nicolson, and (standard) Parallel Tempering.
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1 Introduction

Modern computational facilities and recent advances in com-
putational techniques have made the use of Markov Chain
Monte Carlo (MCMC) methods feasible for some large-scale
Bayesian inverse problems (BIP), where the goal is to char-
acterize the posterior distribution of a set of parameters 6 of
a computational model which describes some physical phe-
nomena, conditioned on some (usually indirectly) measured
data y. However, some computational difficulties are prone
to arise when dealing with difficult to explore posteriors, i.e.,
posterior distributions that are multi-modal, or that concen-
trate around a non-linear, lower-dimensional manifold, since
some of the more commonly-used Markov transition ker-
nels in MCMC algorithms, such as random walk Metropolis
(RWM) or preconditioned Crank-Nicholson (pCN), are not
well-suited in such situations. This in turn can make the
computational time needed to properly explore these compli-
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cated target distributions arbitrarily long. Some recent works
address these issues by employing Markov transitions ker-
nels that use geometric information (Beskos et al. 2017);
however, this requires efficient computation of the gradient
of the posterior density, which might not always be feasible,
particularly when the underlying computational model is a
so-called “black-box”.

In recent years, there has been an active development of
computational techniques and algorithms to overcome these
issues using a tempering strategy (Dia 2019; Earl and Deem
2005; Latz et al. 2018; Miasojedow et al. 2013; Vrugt et al.
2009). Of particular importance for the work presented here
is the Parallel Tempering (PT) algorithm (Earl and Deem
2005; Lacki and Miasojedow 2016; Miasojedow et al. 2013)
(also known as replica exchange), which finds its origins in
the physics and molecular dynamics community. The general
idea behind such methods is to simultaneously run K inde-
pendent MCMC chains, where each chain is invariant with
respect to a flattened (referred to as tempered) version of
the posterior of interest , while, at the same time, propos-
ing to swap states between any two chains every so often.
Such a swap is then accepted using the standard Metropolis-
Hastings (MH) acceptance-rejection rule. Intuitively, chains
with a larger smoothing parameter (referred to as temper-
ature) will be able to better explore the parameter space.
Thus, by proposing to exchange states between chains that
target posteriors at different temperatures, it is possible for
the chain of interest (i.e., the one targeting p) to mix faster,
and to avoid the undesirable behavior of some MCMC sam-
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plers of getting “stuck” in a mode. Moreover, the fact that
such an exchange of states is accepted with the typical MH
acceptance-rejection rule, will guarantee that the chain tar-
geting 1 remains invariant with respect to such probability
measure (Earl and Deem 2005).

Tempering ideas have been successfully used to sam-
ple from posterior distributions arising in different fields of
science, ranging from astrophysics to machine learning (Des-
jardins et al. 2010; Earl and Deem 2005; Miasojedow et al.
2013; Van Der Sluys et al. 2008). The works (Madras and
Randall 2002; Woodard et al. 2009) have studied the conver-
gence of the PT algorithm from a theoretical perspective and
provided minimal conditions for its rapid mixing. Moreover,
the idea of tempered distributions has not only been applied
in combination with parallel chains. For example, the sim-
ulated tempering method (Marinari and Parisi 1992) uses a
single chain and varies the temperature within this chain. In
addition, tempering forms the basis of efficient particle filter-
ing methods for stationary model parameters in Sequential
Monte Carlo settings (Beskos et al. 2016, 2015; Kahle et al.
2019; Kantas et al. 2014; Latz et al. 2018) and Ensemble
Kalman Inversion (Schillings and Stuart 2017).

A generalization over the PT approach, originating from
the molecular dynamics community, is the so-called Infinite
Swapping (1S) algorithm (Dupuis et al. 2012; Plattner et al.
2011). As opposed to PT, this IS paradigm is a continuous-
time Markov process and considers the limit where states
between chains are swapped infinitely often. It is shown in
Dupuis et al. (2012) that such an approach can in turn be
understood as a swap of dynamics, i.e., kernel and temper-
ature (as opposed to states) between chains. We remark that
once such a change in dynamics is considered, it is not pos-
sible to distinguish particles belonging to different chains.
However, since the stationary distribution of each chain is
known, importance sampling can be employed to compute
posterior expectations with respect to the target measure of
interest. Infinite Swapping has been successfully applied in
the context of computational molecular dynamics and rare
event simulation (Doll et al. 2012; Lu and Vanden-Eijnden
2013; Plattner et al. 2011); however, to the best of our knowl-
edge, such methods have not been implemented in the context
of Bayesian inverse problems.

In light of this, the current work aims at importing such
ideas to the BIP setting, by presenting them in a discrete-time
Metropolis-Hastings Markov chain Monte Carlo context. We
will refer to these algorithms as Generalized Parallel Tem-
pering (GPT). We emphasize, however, that these methods
are not a time discretization of the continuous-time Infinite
Swapping presented in Dupuis et al. (2012), but, in fact, a
discrete-time Markov process inspired by the ideas presented
therein with suitably defined state-dependent probabilities of
swapping states or dynamics. We now summarize the main
contributions of this work.

@ Springer

We begin by presenting a generalized framework for dis-
crete time PT in the context of MCMC for BIP, and then
proceed to propose, analyze and implement two novel state-
dependent PT algorithms inspired by the ideas presented in
Dupuis et al. (2012).

Furthermore, we prove that our GPT methods have the
right invariant measure, by showing reversibility of the gen-
erated Markov chains, and prove their ergodicity. Finally,
we implement the proposed GPT algorithms for an array
of Bayesian inverse problems, comparing their efficiency
to that of an un-tempered, (single temperature), version
of the underlying MCMC algorithm, and standard PT. For
the base method to sample at the cold temperature level,
we use Random Walk Metropolis (RWM) (Sects. 5.3-5.6)
or preconditioned Crank-Nicolson (Sect. 5.7), however, we
emphasize that our methods can be used together with any
other, more efficient base sampler. Experimental results show
improvements in terms of computational efficiency of GPT
over un-tempered RWM and standard PT, thus making the
proposed methods attractive from a computational perspec-
tive. From an implementation perspective, the swapping
component of our proposed methods is rejection-free, thus
effectively eliminating some tuning parameters on the PT
algorithm, such as swapping frequency.

We notice that a PT algorithm with state-dependent
swapping probabilities has been proposed in Lacki and Mia-
sojedow (2016), however, such a work only consider pairwise
swapping of chains and a different construction of the swap-
ping probabilities, resulting in a less-efficient sampler, at least
for the BIPs addressed in this work.

Our ergodicity result relies on an Lj spectral gap analysis.
It is known Rudolf (2012) that when a Markov chain is both
reversible and has a positive L;-spectral gap, one can in turn
provide non-asymptotic error bounds on the mean square
error of an ergodic estimator of the chain. Our bounds on the
L,-spectral gap, however, are far from being sharp and could
possibly be improved using e.g., domain decomposition ideas
as in Woodard et al. (2009). Such analysis is left for a future
work.

The rest of this paper is organized as follows. Section
2 is devoted to the introduction of the notation, Bayesian
inverse problems, and Markov chain Monte Carlo meth-
ods. In Sect. 3, we provide a brief review of (standard) PT
(Sect. 3.2), and introduce the two versions of the GPT algo-
rithm in Sects. 3.3 and 3.4, respectively. In fact, we present a
general framework that accommodates both the standard PT
algorithms and our generalized versions. In Sect. 4, we recall
some of the standard theory of Markov chains in Sect. 4.1 and
state the main theoretical results of the current work (The-
orems 1 and 2) in Sect. 4.2. The proof of these Theorems
is given by a series of Propositions in Sect. 4.2. We present
some numerical experiments in Sect. 5, and draw some con-
clusions in Sect. 6.
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2 Problem setting
2.1 Notation

Let (W, ||-]|) be a separable Banach space with associated
Borel o-algebra B(W), and let vy be a o-finite “reference”
measure on W. For any measure © on (W, B(W)) that is
absolutely continuous with respect to vy (in short u < vyy),

we define the Radon-Nikodym derivative nuzz(ﬁ)—’;. We

denote by M(W) the set of real-valued signed measures on
(W, B(W)), and by M(W) C M(W) the set of probability
measures on (W, B(W)).

Let Wi, W5 be two separable Banach spaces with refer-
ence measures vy, , Vw,, and let u; << vw,, u2 < vy, be
two probability measures, with corresponding densities given
by m,,, wu,. The product of these two measures is defined
by

(A) = (u1 x p2) (A)

://A Ty (B1) 7, (02) v, (d61)vw, (d62),

for all A € B(W; x W,). Joint measures on (W X
Wa, B(W1, x Wy)) will always be written in boldface.

A Markov kernel on a Banach space W is a function p :
W x B(W) — [0, 1] such that

1. For each A in B(W), the mapping W 3 6 — p(0, A), is
a B(W)-measurable real-valued function.

2. For each 6 in W, the mapping B(W) > A — p(0, A), is
a probability measure on (W, B(W)).

We denote by P the Markov transition operator associated
to p, which acts on measures as v — vP € M(W), and on
functions as f +— Pf, with Pf measurable on (W, B(W)),
such that

(wP)(A) = / p@, Av(do), YA e B(W),
w

(Pf)©) = fw F()p@.dz). VO € W.

Let P, k = 1, 2, be Markov transition operators associ-
ated to kernels py : Wy x B(Wy) — [0, 1]. We define the
tensor product Markov operator P:=P; ® P, as the Markov
operator associated with the product measure p(@,:) =
p1(01, ) X p2(62,-), 8 = (01, 62) € Wi x W. In particular,
vP is the measure on (W x W,, B(W; x W>)) that satisfies

(vP)(A1 xA2) :f/ P1(61, A1) p2(62, A2)v(dby, dbr),
Wi x W,

for all Ay € B(W;p) and A, € B(W,). Moreover, (Pf) :
Wi x Wy — R is the function given by

P1)©O) = / / F(21, 22)p1 01, dz1) pa(B, d22),
Wi x Wy

for an appropriate f : Wi x W, — R.

We say that a Markov operator P (resp. P)is invariant with
respect to a measure v (resp. v) if vP = v (resp. vP =v ). A
related concept to invariance is that of reversibility; a Markov
kernel p : W x B(W) - [0, 1] is said to be reversible (or
v-reversible) with respect to a measure v € M(W) if

/p(@,A)v(dQ):/p(Q,B)v(dQ), VA, B € B(W).
B A
(M

For two given v-invariant Markov operators Py, P>, we
say that Py P, is a composition of Markov operators, not to
be confused with P; ® P». Furthermore, given a composi-
tion of K v-invariant Markov operators P.:=P\P;... Pk,
we say that P, is palindromic if Py = Px, P, = Px_1,
vees Pk = Px_p+1, k= 1,2..., K. It is known (see, e.g.,
Brooks et al. (2011) section 1.12.17) that a palindromic,
v-invariant Markov operator P, has an associated Markov
transition kernel p. which is v-reversible.

2.2 Bayesian inverse problems

Let (O, ||-llg) and (Y, ||-]ly) be separable Banach spaces
with associated Borel o -algebras 5(®), B(Y). In Bayesian
Inverse Problems we aim at characterizing the probability
distribution of a set of parameters & € @ conditioned on
some measured data y € Y, where the relation between 6
and y is given by:

y=F@)+¢& &~ Unoise- (2
Here ¢ is some random noise with known distribution f&peise
(assumed to have a density mpeise With respect to some ref-
erence measure vy on Y) and F : ® +— Y is the so-called
forward mapping operator. Such an operator can model, e.g.,
the numerical solution of a possibly non-linear Partial Differ-
ential Equation (PDE) which takes 6 as a set of parameters.
We will assume that the data y is finite dimensional, i.e.,
Y = R% for some dy > 1, and that & ~ . Furthermore,

we define the potential function @(0;y) : ® x Y > Ras

@ (0; y) = —log [moise (y — F(O))], 3)
where the function @ (0; y) is a measure of the misfit between

the recorded data y and the predicted value F(6), and often
depends only on ||y — F(0)||y. The solution to the Bayesian
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inverse problem is given by (see, for example, Latz et al.
(2019) Theorem 2.5)

7 (0):=n(0y) = %e““@;”npr(e), 4)

where p (with corresponding vg-density ) is referred to as
the posterior measure and

Z::/{)exp(—@(@;y)),upr(de).

The Bayesian approach to the inverse problem consists of
updating our knowledge concerning the parameter 6, i.e.,
the prior, given the information that we observed in Eq. (2).
One way of doing so is to generate samples from the posterior
measure ©”. A common method for performing such a task
is to use, for example, the Metropolis-Hastings algorithm, as
detailed in the next section. Once samples {9(")}2’:0 have
been obtained, the posterior expectation E,»[Q] of some
w” -integrable quantity of interest @ : ® +— R can be approx-
imated by the following ergodic estimator

1
Ep[Ql~ Q=r—Fr ) Q0™),
n=b

where b < N is the so-called burn-in period, used to reduce
the bias typically associated to MCMC algorithms.

2.3 Metropolis-Hastings and tempering

We briefly recall the Metropolis-Hastings algorithm (Hast-
ings 1970; Metropolis et al. 1953). Let gprop : @ x B(O)
[0, 1] be an auxiliary kernel. Forn = 1, 2, ..., a candidate
state 0* is sampled from gprop (6", -), and proposed as the new
state of the chain at step n + 1. Such a state is then accepted
(i.e., we set 0"T! = 6*), with probability an,

amy (0", 6*) = min {1 7 (6)gprop (6™, 0™) }

' m (en)Qprop(Qn ,0%)

otherwise the current state is retained, i.e., "1 = @".
Notice that, with a slight abuse of notation, we are denoting
kernel and density by the same symbol gprop. The Metropolis-
Hastings algorithm induces the Markov transition kernel

p:O xB(O)— [0,1]
p@,A) = AGMH(Q,Q*)Qprop(Q,d\*)
+ 80 (A) /0(1 —amu (@, 0%))qprop (0, d™),

for every 6 € ©® and A € B(®). In most practical
algorithms, the proposal state 6* is sampled from a state-
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dependent auxiliary kernel gprop(68”, -). Such is the case for
random walk Metropolis or preconditioned Crank Nicol-
son, where qprop(0",) = N(0",X) or gprop(8",-) =
NG/1—p20", p%), 0 < p < 1, respectively. However,
these types of localized proposals tend to present some
undesirable behaviors when sampling from certain difficult
measures, which are, for example, concentrated over a man-
ifold or are multi-modal (Earl and Deem 2005). In the first
case, in order to avoid a large rejection rate, the “step-size”
|| 12 || of the proposal kernel must be quite small, which
will in turn produce highly-correlated samples. In the sec-
ond case, chains generated by these localized kernels tend to
get stuck in one of the modes. In either of these cases, very
long chains are required to properly explore the parameter
space.

One way of overcoming such difficulties is to intro-
duce tempering. Let g, ipr be probability measures on
(©,B(0)), k =1,..., K, such that all u; are absolutely
continuous with respect to upr, and let {7} ,f: | beasetof K
temperatures suchthat 1 = T} < Tp < --- < Ty < oo.
In a Bayesian setting, p, corresponds to the prior mea-
sure and ug, k = 1, ..., K correspond to posterior measures
associated to different temperatures. Denoting by 7y the 1oy -
density of g, we set

e~ PO/ Tk

@)=y

0e0, 5)
where Zk::f(_) e_‘p(e;y)/Tk/Lpr(dG), and with @ (0; y) as
the potential function defined in (3). In the case where Ty =
00, weset iig = fupr. Notice that u corresponds to the target
posterior measure.

We say that for k = 2,..., K, each measure u; is a
tempered version of wi. In general, the 1/7; term in (5)
serves as a “smoothing”! factor, which in turn makes s
easier to explore as 7Ty — oo. In PT MCMC algorithms, we
sample from all posterior measures (1 simultaneously. Here,
we first use a u-reversible Markov transition kernel p; on
each chain, and then, we propose to exchange states between
chains at two consecutive temperatures, i.e., chains targeting
Wk, Lk+1, k € {1,..., K—1}.Such aproposed swap is then
accepted or rejected with a standard Metropolis-Hastings
acceptance rejection step. This procedure is presented in
Algorithm 1. We remark that such an algorithm can be mod-
ified to, for example, propose to swap states every Ny steps
of the chain, or to swaps states between two chains pu;, u js
with i, j chosen randomly and uniformly from the index set
{1,2,..., K}. In the next section we present the general-
ized PT algorithms which swap states according to a random

! Here, smoothing is to be understood in the sense that it flatens the
density.
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permutation of the indices drawn from a state dependent
probability.

Algorithm 1 Standard PT.
function STANDARD PT(N, {pi}K ;. {m} K|, 1pr)

Sample@,ﬁl) ~fpr, k=1,..., K
# Do one step of MH on each chain
forn=1,2,...,N—1do
fork=1,...,K do
Sample G,E"H) ~ k™, )
end for
# Swap states
fork=1,2,..., K —1do
Swap states 6" " and 0,5':[1) with probability

1 1
@0 10

1 1
@)1 05 ")

Qswap = min 7 1,

end for
end for
Output {6"}V_|
end function

3 Generalizing parallel tempering

Infinite Swapping was initially developed in the context of
continuous-time MCMC algorithms, which were used for
molecular dynamics simulations. In continuous-time PT, the
swapping of the states is controlled by a Poisson process on
the set {1, ..., K}. Infinite Swapping is the limiting algo-
rithm obtained by letting the waiting times of this Poisson
process go to zero. Hence, we swap the states of the chain
infinitely often over a finite time interval. We refer to Dupuis
etal. (2012) for a thorough introduction and review of Infinite
Swapping in continuous-time. In Section 5 of the same arti-
cle, the idea to use Infinite Swapping in time-discrete Markov
chains was briefly discussed. Inspired by this discussion, we
present two Generalizations of the (discrete-time) Parallel
Tempering strategies. To that end, we propose to either (i)
swap states in the chains at every iteration of the algorithm
in such a way that the swap is accepted with probability one,
which we will refer to as the Unweighted Generalized Par-
allel Tempering (UGPT), or (ii), swap dynamics (i.e., swap
kernels and temperatures between chains) at every step of
the algorithm. In this case, importance sampling must also
be used when computing posterior expectations since this
in turn provides a Markov chain whose invariant measure is
not the desired one. We refer to this approach as Weighted
Generalized Parallel Tempering (WGPT). We begin by intro-
ducing a common framework to both PT and the two versions
of GPT.

Let (©, |-|lp) be a separable Banach space with asso-
ciated Borel o-algebra B(®). Let us define the K-fold
product space @K:=x le@, with associated product o-
algebra BK := ®,f=1 B(©®), as well as the product measures
on (0K, BK)

=X ks (6)

where ur k =1, ..., K are the tempered measures with tem-
peratures | =T) < T < T3 < --- < Tx < oo introduced
in the previous section. Similarly, we define the product prior
measure i, = xf: | Mpr. Notice that g has a density m ()
with respect to fyq, given by

K
n®) = [[m@). 6:=@1.....00) € OF,
k=1

with 77; () added subscript given as in (5). The idea behind
the tempering methods presented herein is to sample from
I (as opposed to solely sampling from 1) by creating a
Markov chain obtained from the successive application of
two p-invariant Markov kernels p and q, to some initial distri-
bution v, usually chosen to be the prior u,.. Each kernel acts
as follows. Given the current state 8" = (67, ..., 0%), the
kernel p, which we will call the standard MCMC kernel, pro-
poses a new, intermediate state énH = (671”“, e é,"<+l),
possibly following the Metropolis-Hastings algorithm (or
any other algorithm that generates a p-invariant Markov
operator). The Markov kernel p is a product kernel, meaning

that each component 5”, k=1...,K,is generated indepen-
dently of the others. Then, the swapping kernel q proposes a
new state "1 = (01”+1, e 01’?'1) by introducing an “inter-

action” between the components of é(nH). This interaction
step can be achieved, e.g., in the case of PT, by proposing
to swap two components at two consecutive temperatures,
i.e., components k and k 4 1, and accepting this swap with
a certain probability given by the usual Metropolis-Hastings
acceptance-rejection rule. In general, the swapping kernel is
applied every N; steps of the chain, for some Ny > 1. We
will devote the following subsection to the construction of
the swapping kernel q.

3.1 The swapping kernel q

Define .k as the collection of all the bijective maps from
{1,2,..., K} to itself, i.e., the set of all K! possible per-
mutations of id:={1, ..., K}. Leto € .#k be a permutation,
and define the swapped state 6, :=(65 (1), - - . , 95 (k)), and the
inverse permutation o ~! € .#x suchthato oo™ =071 o
o = id.Inaddition, let Sy C .k be any subset of .#k closed
with respect to inversion, i.e., 0 € Sx — o le Sk. We
denote the cardinality of Sk by |Sk|.

@ Springer
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Example 1 As a simple example, consider a Standard PT as
in Algorithm 1 with K = 4. In this case, we attempt to swap
two contiguous temperatures 7; and 7;4+1, i = 1, 2, 3. Thus,
Sk is the set of permutations {01 2, 02 3, 03 4} with:

o12=12,1,3,4),
o3 =(1,3,2,4),
o34 = (1,2,4,3).

Notice that each permutation is its own inverse; for example:
o12(012) =012(2,1,3,4) = (1,2,3,4) =

To define the swapping kernel q, we first need to define
the swapping ratio and swapping acceptance probability.

Definition 1 (Swapping ratio) We say that a function r :
0K x Sk +— [0, 1] is a swapping ratio if it satisfies the
following two conditions:

1. V0 € ©K,r@0, ) isa probability mass function on Sk .
2. Yo € Sk, r(-, o) is measurable on (@K, BK).

Definition 2 (Swapping acceptance probability)
Letd € ©K and o, 07! € Sk. We call swapping accep-

tance probability the function oswap : @K x Sk + [0, 1]
defined as
: Os)r@s ) :
o0, 0) = | | HE ] 000 0
0 ifr(@,o0) =0.

We can now define the swapping kernel q.

Definition 3 (Swapping kernel) Given a swapping ratio r :
OK x Sk + [0, 1] and its associated swapping acceptance
probability aswap : @K x Sk > [0, 11, we define the swap-
ping Markov kernel q : ©K x BX - [0, 1] as

> r@.0) [0

OGSK

+ swap (0, 0)dg,, (B)] )

q(0, B) = _aswap(oa 0))3¢(B)

0 c ©K, B e BX, 7

where 8¢ (B) denotes the Dirac measure in 0, i.e., 5g(B) = 1
if @ € B and 0 otherwise.

The swapping mechanism should be understood in the
following way: given a current state of the chain § € @K,
the swapping kernel samples a permutation o from Sx with
probability (6, o) and generates 6. This permuted state is
then accepted as the new state of the chain with probabil-
ity aswap(#, o). Notice that the swapping kernel follows a
Metropolis-Hastings-like procedure with “proposal” distri-
bution 7 (6, o) and acceptance probability c/swap(6, o).

@ Springer

Moreover, as detailed in the next proposition, such a kernel
is reversible with respect to u, since it is a Metropolis-
Hastings type kernel.

Proposition 1 The Markov kernel q definedin (7) is reversible
with respect to the product measure u defined in (6).

Proof Let A, B € BX. We want to show that

/ 4(6. Bu(dh) = / 4(0. Ap(dh).
A B

Thus,

/ 0, Bu@s) = / F(8. 0 )swap . )30, (B) (0) tpr (06)

oeSk

1

+ Y / r,0) (1 = eowap(® 0)) 89 (B)T (O)11,,(d6) .

o€eSk

11

Let Ay:={z € oK . Z,-1 € A}, and, for notational sim-
plicity, write min{a, b} = {a A b}, a,b € R. From I, we
have:

SPAL

-1
M} £, 0)m(0)30, (B)ptpr (46)

oo x(0)r (0, o)

0)r (6,
-y / { ,,5()3(5 Z),l)} (0.0 )1 (B30, (B)ppr (d6).
o€eSk

Then, noticing that p,, is permutation invariant, we get

=y e

oeSk

7[(0071)}’(0571, o) }
x(@r@,0 1)

x (0, 0~")m(0)39(B) i, (d0)

@,-)r@,-1,0)
— Z/ { W, o }

ocse JAcNB w(@)r@,o-"

x (0,0 )1 (0)89(B) ppy (d6)

. Z /{ 7[(00_1)}’(00_1,0’)}

fors) x@)r@,01)

x (0,0~ )7 (0)39(Ag) e (d6)

@,-1)r@, -1,0)
— Z/{ (Vs o }

5 z(0)r@.0°7)

x (0,0~ )m@)3, (A (d0)

-y / F@, 0~ )T @)asap® )8, (A)iy(d6)

UESK

-y / 10, )7 O)ctanap (B, 015, (A) iy (d0).

geSk
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For the second term /1 we simply have

Il = Z /V(G o) (1 — aswap(0, )3 (B)7 (0) ., (d6)

o€eSk
= Z/ r(0,0)(1 — aswap(0, 0))3¢ (B)7 (0) pr,,(d6)
oeSk ANE
= Z /r(0 0)(1 — atswap(0, 0))3 (A)7 (0) pp; (d0).
O'ES](

]

This generic form of the swapping kernel provides the
foundation for both PT and GPT. We describe these algo-
rithms in the following subsections.

3.2 The parallel tempering case

We first show how a PT algorithm that only swaps states
between the i™ and j™ components of the chain can be cast
in the general framework presented above. To thatend, leto; ;
be the permutationof (1, 2, ..., K), which only permutes the

th and j™ components, while leaving the other components
invariant (i.e., such that o (i) = j, 0(j) =i, and 0 (k) =k,
k #1i,k # j). We can take Sk = {0;,j, i,j =1,..., K}
and define the PT swapping ratio between components i and
: 0K x Sk [0, 1] as

1 ifo=o0;,

0, 0):= i

" 0 otherwise.
5 0s.07h) = riV0.0)
since o, ' = oy ; and r(PT) does not depend on @, which

iJj
in turn leads to the swapping acceptance probability as(azz, :

OK x Sk > [0, 1] defined as:

Notice that this implies that r

70, ;)
oD, o,j)_mm{l o }
aleiy(0.0) =0, o # 0 ;.

Thus, we can define the swapping kernel for the Paral-
lel Tempering algorithm that swaps components i and j as
follows:

Definition 4 (Pairwise Parallel Tempering swapping kernel)
Let § € ©OK, 0i,j € Sk. We define the Parallel Tempering

swapping kernel, which proposes to swap states between the
th and j® chains as q(PT) 6K x BK - [0, 1] given by

0700, =Y rP6.0) (1 -alh®. 0030 (B)

OES](

+ a0, 015, (B))

Aswap

= (1 — min {1, 7 (bo,) } 89(B)>
m(0)
71'(001'1‘,')
m(0)

+ min {l, }505” (B), VB e BX.

In practice, however, the PT algorithm considers various
sequential swaps between chains, which can be understood
by applying the composition of kernels quT) q]({P;[) ... at
every swapping step. In its most common form Brooks et al.
(2011); Earl and Deem (2005); Miasojedow et al. (2013), the
PT algorithm, hereafter referred to as standard PT (which on
a slight abuse of notation we will denote by PT), proposes to
swap states between chains at two consecutive temperatures.
Its swapping kernel T : ©K x BX - [0, 1] is given by

(PT).

PT) (PT PT
q i’)( ) oPT)

=412 923 - dg—1,k-

Moreover, the algorithm described in Earl and Deem (2005),
proposes to swap states every Ny > 1 steps of MCMC. The
complete kernel for the PT kernel is then given by Brooks
etal. (2011); Earl and Deem (2005); Miasojedow et al. (2013)

PT) (PT PT

p =4, q23~q1<11<P

where p is a standard reversible Markov transition kernel
used to evolve the individual chains independently.

Remark 1 Although the kernel p as well as each of the q; ;41
are p-reversible, notice that (8) does not have a palindromic
structure, and as such it is not necessarily p-reversible. One
way of making the PT algorithm reversible with respect to u
is to consider the palindromic form

pRPD.— ( (PT) ,(PT)  (PT) (PT) (PT))

(PT)
412 423 - dg - 1K)P (qKK 1432 42 1

where RPT stands for Reversible Parallel Tempering. In
practice, there is not much difference between p®FT) and
p®D, however, under the additional assumption of geomet-
ric ergodicity of the chain (c.f Sect. 4) having a reversible
kernel is useful to compute explicit error bounds on the non-
asymptotic mean square error of an ergodic estimator (Rudolf
2012).

3.3 Unweighted generalized parallel tempering

The idea behind the Unweighted Generalized Parallel Tem-
pering algorithm is to generalize PT so that (i) Ny = 1
provides a proper mixing of the chains, (ii) the algorithm
is reversible with respect to p, and (iii) the algorithm consid-
ers arbitrary sets Sk of swaps (always closed w.r.t inversion),
instead of only pairwise swaps. We begin by constructing a
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kernel of the form (7). Let »*"W) : ©K x Sx — [0, 1] be a
function defined as

w(0s)
Za’eSK 7!(00/) '

Clearly, (9) is a swapping ratio according to Definition 1.
As such, given some state § € ok rOW @, o) assigns
a state-dependent probability to each of the |Sg| possible
permutations in Sk. A permutation o € Sk is then accepted
with probability a§3§§) (8, 0), given by

r'W,0):= 0cOK oecSk. (9

(UW)
swap

o @,0):=min]1,

7 (0o)r"™ (0, 07" (10)

x(@)rTW) (@, o)

Thus, we can define the swapping kernel for the UGPT
algorithm, which takes the form of (7), with the particular
choice of (8, o) = rW) (0, o) and
swap(8, ) = aly) (6, 0).

Notice that arlway (8, o) = 1, Yo € Sk. Indeed, if we further
examine Eq. (10), we see that

@)W @, 07 w@,) w6 Y, m0)

x@)rWW@,0)  w@) =m@,) Y ,m®s)
_n0,) m®)
@) w0,

In practice, this means that the proposed permuted state is
always accepted with probability 1. The expression of the
UGPT kernel then simplifies as follows.

Definition 5 (unweighted swapping kernel) The unweighted
swapping kernel (VW) : @K x BK 1 [0, 1] is defined as

q"™ @, B) =Y r"™@,0)8,B),

(TES[(

v0 € ©K, B e BX. Applying this swapping kernel suc-
cessively with the kernel p = p1 x p2 X ... pk in the order
qWWpq"™W) =: pW) gives what we call Unweighted Gen-
eralized Parallel Tempering kernel p\UW). Lastly, we write
the UGPT in operator form as

PUW) .— QUWIpQUW),

where P and QW) are the Markov operators corresponding
to the kernels p and (YW, respectively. We now investigate
the reversibility of the UGPT kernel. We start with a rather
straightforward result.

Proposition 2 Suppose that, for any k = 1,2,..., K, px is
Wi-reversible. Then, p = p1 X --- X pg is reversible with
respect to L.

@ Springer

Proof We prove reversibility by confirming that Eq. (1) holds
true. To that end, let 8 € OK, A, B ¢ BX, where A
and B tensorize, i.e., A 1= ]_[f:l Ar and B := ]_[,f:1 By, with
Ai,..., Ak, By, ..., Bg € B(®). Then,

K
| 7@ 5000 =] [ 760000, B,
A k=1" Ak

K
=1/ r@ope. ande
k=1" Bk

= / 7 (@)p(@, A)db.
B

Showing that the previous equality holds for sets A, B that
tensorize is indeed sufficient to show that the claim holds for
any A, B € BX . Thisfollows from Carathéodory’s Extension
Theorem applied as in the proof of uniqueness of product
measures; see Ash (2000) section 1.3.10, 2.6.3, for details. O

We can now prove the reversibility of the chain generated
by pUW).

Proposition 3 (Reversibility of the UGPT chain) Suppose
that, for any k = 1,2,..., K, pi is ui-reversible. Then,
the Markov chain generated by pWW) is p-reversible.

Proof 1t follows from Propositions 1 and 2 that the ker-
nels W) and p are p-reversible. Furthermore, since p("W)
is a palindromic composition of kernels, each of which is
reversible with respect to g, then, p{"W) is reversible with
respect to p Brooks et al. (2011). O

The UGPT algorithm proceeds by iteratively applying the
kernel p(UW) to a predefined initial state. In particular, states
are updated using the procedure outlined in Algorithm 2.

Algorithm 2 Unweighted Generalized Parallel Tempering.

function GENERALIZED PARALLEL TEMPERING(p, N, v)
Sample 8D ~ v
forn=1,2,...,N—1do
# First swapping kernel
Sample 8% ~ qUW) (9™ .
# Markov transition kernel p
Sample z"TV ~ p@, -) kernel
# Second swapping kernel
Sample 97 +D) ~ q(UW) (D)
end for
Output {9"}N_|
end function

Remark 2 In practice, one does not need to perform |Sk|
posterior evaluations when computing »(VW) (6", .), rather
“just” K of them. Indeed, since 7;(6}') o (O, k, j =
1,2,..., K, we just need to store the values of 7 (6}), k
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1,2,..., K,forafixed n, and then permute over the temper-
ature indices.

Let now Q : ® — R be a quantity of interest. The poste-
riormean of Q, u(Q):=u1(Q) is approximated using N € N
samples by the following ergodic estimator Qywy):

Z (0",

n(Q) ~ @(UW)

3.3.1 A comment on the pairwise state-dependent PT
method of chki and Miasojedow (2016)

The work Lacki and Miasojedow (2016) presents a simi-
lar state-dependent swapping. We will refer to the method
presented therein as Pairwise State Dependent Parallel Tem-
pering (PSDPT). Such a method, however, differs from
UGPT from the fact that (i) only pairwise swaps are con-
sidered and (ii) it is not rejection free. We summarize such a
method for the sake of completeness. Let Sk pairwise denote
the group of pairwise permutations of (1,2, ..., K). Given
a current state § € @K, the PSDPT algorithm samples a
pairwise permutation 6, oij € Sk pairwise With probability

(PSDPT) (0, 0;,;) given by

- (PSDPT) _exp(—|P (6, y) — P;; y)D)
l (0 ) - 9
] 2 k1 €Xp(—=[@ (6, y) — @ (615 y)])

and then accepts this swap with probability

1 1
| (m@)\
Oap (0, 03)) 1= mm{l’ <m(el-)) J }
J

This method is attractive from an implementation point of
view in the sense that it promotes pairwise swaps that have
a similar energy, and as such, are likely (yet not guaranteed)
to get accepted. In contrast, UGPT always accepts the new
proposed state, which in turn leads to a larger amount of
global moves, thus providing a more efficient algorithm. This
is verified on the numerical experiments.

3.4 Weighted generalized parallel tempering

Following the intuition of the continuous-time Infinite Swap-
ping approach of Dupuis et al. (2012); Plattner et al. (2011),
we propose a second discrete-time algorithm, which we
will refer to as Weighted Generalized Parallel Temper-
ing (WGPT). The idea behind this method is to swap the
dynamics of the process, that is, the Markov kernels and
temperatures, instead of swapping the states such that any
given swap is accepted with probability 1. We will see that
the Markov kernel obtained when swapping the dynamics is

not invariant with respect to the product measure of interest
p; therefore, an importance sampling step is needed when
computing posterior expectations.

For a given permutation o € Sk, we define the swapped
Markov kernel p, : ©K x BK +— [0, 1] and the swapped
product posterior measure [, (on the measurable space
(0K, BKY) as:

Ps(0,-) = po1)(B1, ) X -+ X pe(x)(Ok, ),

Ro = Mo(1) X =+ X Lo (K)»

where the swapped posterior measure has a density with
respect to Ko given by

0ecOX oeSk

Y

o (0) :=7m51)(01) X - -+ X W5 (k) (Ok),

Moreover, we define the swapping weights

7 (0)

> oe@K’ o € Sk.
Y oresy To'(0)

we(0) = (12)

Note that, in general, &, () # 7w (0, ), and as such, w, (8) #
r(OW) (@, o), with w, defined as in (12).

Definition 6 We define the Weighted Generalized Parallel
Tempering kernel p™) : @K x BX 1 [0, 1] as the following
state-dependent, convex combination of kernels:

p™ @, )= w,(0)p,0,), 6¢c0OX oesk.

oeSk

Thus, the WGPT chain is obtained by iteratively applying
p™). We show in Proposition 4 that the resulting Markov
chain has invariant measure

P = D e =[x x L,
ISKI
oeSk
with 1 = ﬁ > s Mo, 1.e., the average with tensorization.

Furthermore, gy has a density (w.r.t the prior u°) given by

7,0), 0c ok,

o€eSk

_l
w()m

and a similar average and then tensorization representation
applies to mw. We now proceed to show that p™) (@, -) is
Ly -reversible (hence v -invariant).

Proposition 4 (Reversibility of the WGPT chain) Suppose
that, for any k = 1,2,..., K py is uy-reversible. Then,
the Markov chain generated by p™) is wy-reversible.

@ Springer
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Proof We show reversibility by showing that (1) holds true.
Thus, for § € @K, A, B € BX, with A:=A| x --- x Ag,
Ay € B(®), and with By defined in a similar way, we have
that:

fA p™ (0. B)ymw(0)p,(d6)

ZpESK np(0)

= «(0)ps (0, B " de
/A ersKw()p( ) S M@0
s (0)
= ——p,(0,B
/:4 ZU’ESK ]tg/(g)p ( )

oeSk

> ZpGSK 7[/3(0)
ISkl

> [ 7o @m0 0. Brupat) = 1.

oeSk

Wy (d0)

|SK|

From proposition 2, and multiplying and dividing by

> m,0)

pESK

we obtain

= |SK| Z /”a(o)pg(ﬂ A)”'pr(da) (by Prop. 2)

«(@)ps(0, A)
|SK| Z / %a eSp 7[0’(0) Z p(e)”’pr(de)

pESK

3 / s )P (6, AT (B) e (00)

O'ES](

= fB p™ (0, A)mrw (O)p,(d6).

where once again, in light of Carathéodory’s Extension The-
orem, it is sufficient to show that reversibility holds for sets
that tensorize. m]

We remark that the measure py is not of interest per
se. However, we can use importance sampling to compute
posterior expectations. Let Q(6):=Q(0;) be a p-integrable
quantity of interest. We can write

(0
E, [Q] =Eu[Q01)] =Ey,, [9(91) ((3)]
x(0s)
-— YE 0, .
[Sk| Z fow [Q( ) W(00)1|

oeSk

The last equality can be justified since pyy is invariant by
permutation of coordinates. Thus, we can define the follow-
ing (weighted) ergodic estimator Qw) of the posterior mean

@ Springer

of a quantity of interest Q by

n(Q) ~
O = —— L 705") oo
Qw) = Sk N Ug{; nw(af,”))g( (1))
|SK| N Z wa(") G)Q(H,f’él)), (13)
oeSg n=1

where we have denoted the importance sampling weights by

w,o)= n’;é?j)’(z) = d(/jt_ﬂw (0,) and where N is the number of

samples in the chain. Notice that w(#, o) = W(0, 0~ "). As
a result, the WGPT algorithm produces an estimator based
on N K weighted samples, rather than “just” N, at the same
computational cost of UGPT. Thus, the previous estimator
evaluates the quantity of interest Q not only in the pomts
Q(Ql(")) but also in all states of the parallel chains, Q(

forall ¢ € Sk, namely Q(Gk")), k=1,2,...,

S

Remark 3 Although itis known that, in some cases, an impor-
tance sampling estimator can be negatively affected by the
dimensionality of the parameter space @ (see e.g., Asmussen
and Glynn (2007) Remark 1.17 or Owen (AB) Examples
9.1-9.3), we argue that this is not the case for our estimator.
Indeed, notice that the importance-sampling weights w(f, o)
are always upper bounded by [Sk|, and do not blow up
when the dimension goes to infinity. In Sect. 5.7 we present
a numerical example on a high-dimensional problem. The
results on that section evidence the robustness of WGPT with
respect to the dimension of 6.

The Weighted Generalized Parallel Tempering procedure
is shown in Algorithm 3. To reiterate, we remark that sam-
pling from p, (8™, ) involves a swap of dynamics, i.e.,
kernels and temperatures.

Algorithm 3 Weighted Generalized Parallel Tempering.

function WEIGHTED  GENERALIZED  PARALLEL  TEMPER-
ING( p, N, v)
Sample 8V ~ v
forn=1,2,..., N —1do
# Sample permutation o with probability w, (")
Sample o ~ {wa’(on)}a’esl(
# Sample state with the swapped Markov kernel
Sample 7D ~ p, (9™, )

end for
Output {1V
end function

1 Hwer (0™))oresi sy -

Just as in Remark 2, one only needs to evaluate the poste-
rior K times (instead of |Sk|) to compute w.y(0").
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4 Ergodicity of generalized parallel
tempering

4.1 Preliminaries

We assume that the chains generated by the MCMC ker-
nels pg, for k = 1,..., K, are aperiodic, ui-irreducible
(Asmussen and Glynn 2007), and have invariant measure
ux on the measurable space (@, B(®)). Letr € [1, co) and
uw € M(®) be a “reference” probability measure. On a BIP
setting, this reference measure is considered to be the poste-
rior. We define the following spaces

L =L, (®,n) ={f:0 R, u-measurable,
SN = / O] 1(d6) < oo},
L) =L)(©,p) ={f € L, (O, ),

s.tu(f)= /O f(@)u(dd) = 0} :

Moreover, when r = 0o, we define

Loo@®,pn)=3f:0—R, st inf sup
n(B)=0 ye@\B
BeB(®)

lf I < o0

Notice that, clearly, L(r)(@, w) C Ly(®, ). In addition we
define the spaces of measures

M}’(@v M):Z{U € M(@) S't' v << ,bL, ”U”L,(@,,u) < OO},
dv
du

where (VL @) = H .
L (O,u)

Notice that the definition of L,-norm depends on the refer-
ence measure i, and on ©.

A Markov operator P : L,(®,u) — L.(®, ) with
invariant measure p is a bounded linear operator whose norm
is given by

1Pz, 00100 = sup  IPflL .-

1Az, ©,0=1

for f € L,(®, n).Itis well-known (see, e.g., Rudolf (2012))
that any Markov operator P on L, (®, p) with invariant mea-
sure u can be understood as a weak contractionin L, (®, ),
ie, |PllL, @ L, @, < 1. To quantify the convergence
of a Markov chains generated by a Markov operator P, we
define the concept of geometric ergodicity. Let r € [1, oo].
A Markov operator P with invariant measure u € M(O)
is said to be L. (®, w)-geometrically ergodic if for all prob-
ability measures v € M, (@, ) there exists an o € (0, 1)
and C,, < oo such that

lvP" — e, @0 < Cva", ne N. (14)

A related concept to Ly-geometric ergodicity is that of L;-
spectral gap. A Markov operator P : L>(®, u) — L2 (O, 1)
with invariant measure u € M(®)hasan L (@, p)-spectral
gap 1 — B > 0, with 8 < 1, if the following holds

||P||L(23(@,,,_),_>Lg(@’#) <B. (15)

The next Proposition, whose proof can be found e.g., in
Rudolf (2012), relates the existence of an Lj-spectral gap
to the geometric ergodicity of the chain (with 8 < «, in
general).

Proposition5 Let P : Lo(®,un) — Ly(O,n) be a u
reversible Markov transition operator. The existence of an
L> (O, w)-spectral gap implies L, (®, w)-geometric ergod-
icity for any r € [1, oo].

Proof The previous claim is shown in Rudolf (2012) Proposi-
tion 3.17 and Appendix A.4. Itis also shown in Rudolf (2012)
that, in general, § < «, with «, B given as in Egs. (14) and
(15). O

Our path to prove ergodicity of the GPT algorithms will
be to show the existence of an L;-spectral gap.

4.2 Geometric ergodicity and L,-spectral gap for
GPT

The main results of this section are presented in Theorems
1 and 2, which show the existence of an L;-spectral gap for
both the UGPT and WGPT algorithms, respectively.

We begin with the definition of overlap between two prob-
ability measures. Such a concept will later be used to bound
the spectral gap of the GPT algorithms.

Definition 7 (Density overlap) Let 1, 14 j be two probability
measures on the measurable space (@, B(®)), each having
respective densities mx(9), ;(0), 6 € ©, with respect to
some common reference measure vg also on (@, B(O®)).
We define the overlap between 7y (6) and 7 (0) as

Mg (T, 70j) = fo min{r (0), 7;(6)}ve (d)

1
=1- 5 ”“k MK “Ll(@,u@)'
An analogous definition holds for w,, 7 ,, with p, o € Sk.
Assumption1 For k = 1,..., K, let ux € M(O, py)
be given as in (5), pr : @ x B(®) — [0, 1] be the

Markov kernel associated to the k™ dynamics and let Py :
L. (®, ur) — L (O, ui) be its corresponding iy invariant
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Markov operator. In addition, for o, p € Sk, define the mea-
sures f,, K, € M(@OK)asin Eq. (6). Throughout this work
it is assumed that:

C1 The Markov kernel py is py-reversible.

C2 The Markov operator Py has an L (®, u) spectral gap.

C3 For any o,p € Sk, Ag,p:zn”m(ng, m,) > 0, with
s, 7, defined as in (11).

These assumptions are relatively mild. In particular,
C1 and C2 are known to hold for many commonly-used
Markov transition kernels, such as RWM, Metropolis-
adjusted Langevin Algorithm, Hamiltonian Monte Carlo,
(generalized) preconditioned Crank-Nicolson, among others,
under mild regularity conditions on 7 Asmussen and Glynn
(2007); Hairer et al. (2014). Assumption C3 holds true given
the construction of the product measures in Sect. 3.

We now present an auxiliary result that we will use to
bound the spectral gap of both the Weighted and Unweighted
GPT algorithms.

Proposition 6 Suppose that Assumption 1 holds and let
P:=QC, P : Lo(OK, ) > La(OK, ), with invariant
measure . = (1 X -+ X wg. Then, P has an Lo(OX, p)-
spectral gap, i.e., ”P”LO(@K,[L)D—)L(Z)(@K,/L) < 1. Moreover, the
Markov chain obtained from P is L, geometrically ergodic,
foranyr € [1, co].

Proof We limit ourselves to the case K = 2, since the
case for K > 2 follows by induction. Denote by [
Lr(O, ug) — La(O, ug), k = 1,2 the identity Markov
transition operator, and let f € Lr(62, ). Notice that
f admits a spectral representation in L,(®2, p) given
by f(0) = Xy o@DV (@)ck,j, with ¢ j € R, and
where {¢r}icn 1s a complete orthonormal basis (CONB)
of Ly(®, 1) and {¥;}jen is a CONB of Ly(®, uz), so
that {¢r ® ¥}k, jen is a CONB of L>(©2, p). Moreover,
we assume that ¢g = Yo = 1, and write, for notational
simplicity | Pill = [1Pillz,0,u)L20,01)> and | P2 =
P21l 230,150 Lo (@ 1)+ Lastly, denote fo = f — co.0, s0
that fy € Lg(@z, ). Notice that

2
IP @D Sl o= D (Prgw)vjer,
(k, j)#(0,0) Lz((")z,[L)
2
oo oo o0
= Z( P1¢k6k,j)l/fj+200,j1’1¢olﬂj
j=0 \k=1 j=1 La(©2.0)
(16)
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Splitting the sum, we get from the orthonormality of the basis
that:

00 2

16 =)

j=1

o0

Pyprck,j + co,j P1go
k=1

Ly (®,u1)
2

+

oo
Z Pigrcro
k=1

Ly(O,p1)

o 2
Py (Z ¢k6k,j>

k=1

o0
2
+ Z ||C0,j¢’0”L2(<~),u1)
Ly(@,uy)  J=]

e8]
j=1

2
+

o¢]
Py <Z¢kck,0>
k=1 La(O,p1)
x o oo
<> <||P1 12> et +c3,,.) +IPIPD e
j=1

k=1 k=1

X
=PI 1 foll7 2.y + (1= I1PLIP) D (o, )
j=1

Proceeding similarly, we can obtain an equivalent bound
for ”(1®P2)f0”iz((~)2,u)' We are now ready to bound
Pl

2 .
Lo (02, m)i—> L2 (0%, )"

IPfoll7 2.y =11 ® P2 foll7, 2
=P @ DU @ P2) foll}, 2.
<IPP I @ P foll} 2.
+A =P

x i((l@f@) >

Jj=1 (€,k)#(0,0)

2
cexPet, ¢o%‘)

=PI 1T ® P foll7, 2

oo oo 2
+ (=P %) (Z (Z cok(P2y), %) )

j=1 \k=I

<P I @ P2) foll7 2

()

k=1
2
"j,o)
2
Co,k)
1

2
+ A=~

L2(O,u2)

<P 1P 1 foll7 2.

M2

+IP2 (1= P2l (

J

gk

+ A =[P P (

f<
Il
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Assuming without loss of generality that || P || > || P2||, we
can use the inequality above to bound

2 2 2 2
IPfol2 2y < 1P NP2 1 fol2 2

o0 o0
FIPIP A= 1P [ Y2+ By

j=1 k=1

<lfol?

Ly(©2,p)

2 2
= ”Pl” ||f0”L2(@2,[l,) .

Thus, we have that

111302 w1802 = MU P 196 s L300} < 1-

The previous result can easily be extended to K > 2. Lastly,
L, (©K u)-geometric ergodicity Vr € [1, oo] follows from
proposition 5. O

We can use the previous result to prove the geometric
ergodicity of the UGPT algorithm:

Theorem 1 (Ergodicity of UGPT ) Suppose Assumption /
holds and denote by u the invariant measure of the UGPT
Markov operator POW). Then, PYW) has an L,(OK, -
spectral gap. Moreover, the chain generated by POW) s
L. (OK, w)-geometrically ergodic for any r € [1, ool

Proof Recall that P(UW):=QUW)PQUW)  From the defini-
tion of operator norm, we have that

e

LY @K W LYOK. )
<Je,

= ||P||Lg(@K,;L)»—>Lg((-)K,;L) <1,

LO(OK [L)}—)LO(OK ) ” ”L(z)((")K;ﬂ)’—’Lg(@Kaﬂ)

where the previous line follows from Proposition 6 and the
fact that Q(UW) is a weak contraction in Ly(©X, p) (see,
e.g., Baxter and Rosenthal (1995) Proposition 1). Lastly,
L. (©K | p)-geometric ergodicity Vr € [1, oo] follows from
Proposition 5 and the fact that P(VW) is p-reversible by
Proposition 3. O

We now turn to proving geometric ergodicity for the
WGPT algorithm. We begin with an auxiliary result, lower-
bounding the variance of a py-integrable functional f €

Ly(0K, ).

Proposition7 Let f € L (OK Lw) be a .y -integrable
function such that ||f||L2((.)K’ILW) = 1, and denote by
Vuw L V[ f]the variance of f with respect to iy, i,

respectively with o € Sk. In addition, suppose Assumption
1 holds. Then, it can be shown that

with Ay = min {Aq p} and As p as in Assumption C3.
0,pESK '

Proof The proof is technical and tedious and is presented in
Appendix A. O

We are finally able to prove the ergodicity of the WGPT
algorithm.

Theorem 2 (Ergodicity of WGPT) Suppose Assumption 1
holds for some r € [1, co] and denote by p the invariant
measure of the WGPT Markov operator P™). Then, PW)
has an Ly(©X | pw)-spectral gap. Moreover; the chain gen-
erated byP™ is L, (©K | wyw) geometrically ergodic for any
r e [l, ool

Proof Let L:={f € LY(OK, py) :

i ' ' ”f”Lg(@K,ILW) = 1},
and, for notational clarity, write

1P, 1= P2

LYK u)—LYOK )

Then, from the definition of operator norm,

|7,

LYOK, uw)— LY (O, )

=su P ‘
PreL H f Ly (0K, uy)

2

= sup / > w,6) f F(0IPo 0, dy)| iy (d6)
feLl CLS oK

oeSk
< sup / Z uw(cw)
fe
= ”’o’(da)
fe£|SK| Z /;)K oK
(17)

where the second to last line follows from the convexity of
()2 and the last line follows from the definition of w, and
Rw- Now, let f;:=p, (f). Notice that we have

~/@K /(;Kf(y)pa

:/@K /@K(f(y) — fo + fo)ps (6, dy)

=/ (‘ (f») — fo)ps (0, dy)
@K @)K

2
s (dB)

2
Ko (dO)

2
+

2

/ fapa(ovd)’)
@K
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+2f5 f (f(y) - fg)pa(o,dy)> R (d6)
@K

2
_ / (f (f(y)—f(,)pa(o,dy)) o (06) + ()2
@K @K
1

+27, / / (F9) = Jo)Pae(®. dy) e (d0) Oby stationarity
@K @K

(18)
Thus, multiplying and dividing / by
= \2
( f (fO) = fo) no <d0)> ,
@K
we obtain from the definition of ||P, IIEO that:
2
18— ( Jor (Jox (F ) = foIps @, dy))zu(,(da))
Jor (£®) — fo)’ 1, (d6)
x ( / (f@® — f»)* ug(d())) +(fa)?
@K
<P, 1%, ( / (f®) - fo)’ uo(d())) +(fo)?
2 @K
L2 ( f f(0)2ﬂa(d0)> (19)
2 oK

+ (1= 1Py (fo)®

= ( / O (cw)) — (1= 1P 12y). withy € . 1)
oK 2
N———
=y

x ( / (7 6) - fa)zuamo)).
oK

Replacing Eq. (19) into Eq. (17), we get

e
LYOK pw)—~ LY (OK )
4
< sup ( f(0>2uw(d0>) ——— >V f]
fer \Jok ISkl

oeSk

A
<l-y “__) <1 (by Proposition 7).
2— Ay

Thus, P™) has an L,(OK, pyw) spectral gap. Once
again, L, (0K, JLw )-geometric ergodicity (with r € [1, 0o])
follows from Proposition 5 and the fact that PV is gy -
reversible by Proposition 4. O

4.2.1 Discussion and comparison to similar theoretical
result

Theorems 1 and 2 state the existence of an Lj-spectral gap,

hence L,-geometric ergodicity for both the UGPT and the
WGPT algorithm. Their proof provides also a quantification

@ Springer

of the L-spectral gap in terms of the L,-spectral gap of each
individual Markov operator Px. Such a bound is, however,
not satisfactory as it does not use any information on the
temperature and it just states that the Ly-spectral gap of the
UWPT and WGPT chain is not worse that the smallest L,-
spectral gap among the individual chains (without swapping).
This result is not sharp, as it can be evidenced in the numerical
section, where a substantial improvement in convergence is
achieved by our methods.

Convergence results for the standard parallel tempering
algorithm have been obtained in the works (Miasojedow et al.
2013) and (Woodard et al. 2009). In particular, the work (Mia-
sojedow et al. 2013) has proved geometric ergodicity for the
pairwise parallel tempering algorithm using the standard drift
condition construction of Meyn and Tweedie (2012). It is
unclear from that work which convergence rate is obtained for
the whole algorithm. In comparison, our results are given in
terms of spectral gaps. On the other hand, the work Woodard
etal. (2009) presents conditions for rapid mixing of a particu-
lar type of parallel tempering algorithm, where the transition
kernel is to be understood as a convex combination of such
kernels, as opposed to our case, where it is to be understood
as a tensorization. Their obtained results provide, for their
setting, a better convergence rate that the one we obtained
for the UGPT. We believe that their result can be extended
to the UGPT algorithm, and this will be the focus of future
work. On the other hand, the use of the ideas in Woodard et al.
(2009) for the WGPT algorithm seems more problematic.

5 Numerical experiments

We now present four academic examples to illustrate the effi-
ciency of both GPT algorithms discussed herein and compare
them to the more traditional random walk Metropolis and
standard PT algorithms. Notice that we compare the differ-
ent algorithms in their simplest version that uses random
walk Metropolis as a base transition kernel. The only excep-
tion is in Sect. 5.7, which presents a high-dimensional BIP
for which the preconditioned Crank-Nicolson Cotter et al.
(2013) is used as the base method in all algorithms instead of
RWM. More advanced samplers, such as Adaptive metropo-
lis (Haario et al. 2006, 2001), or other transition kernels,
could be used as well to replace RWM or pCN. Experiments
5.3,5.4 and 5.5 were run in a Dell (R) Precision (TM) T3620
workstation with Intel(R) Core(TM) i7-7700 CPU with 32
GB of RAM. Numerical simulations in Sects. 5.3 and 5.5
were run on a single thread, while the numerical simulations
in Sect. 5.4 were run on an embarrassingly parallel fashion
over 8 threads using the Message Passing Interface (MPI)
and the Python package MPI4py (Dalcin et al. 2005). Lastly,
Experiments 5.6 and 5.7 were run on the Fidis cluster of the
EPFL. The scripts used to generate the results presented in
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this section were written in Python 3.6, and can be found in
https://doi.org/10.528 1/zenodo.3700048.

5.1 Implementation remarks

In most Bayesian inverse problems, particularly those dealing
with large-scale computational models, the computational
cost is dominated by the evaluation of the forward opera-
tor, which can be, for example, the numerical approximation
of a possibly non-linear partial differential equation. In the
case where all possible permutations are considered (i.e.,
Sk = Sk), there are K! possible permutations of the states,
the computation of the swapping ratio in the GPT algorithms
can become prohibitively expensive if one is to evaluate
K! forward models, even for moderate values of K. This
problem can be circumvented by storing the values n(Q,E") ),
k=1,...,K,n = 1,...N, since the swapping ratio for
GPT consists of permutations of these values, divided by the
temperature parameters. Thus, “only” K forward model eval-
uations need to be computed at each step and the swapping
ratio can be computed at negligible cost for moderate values
of K.

There is, however, a clear trade-off between the choice of
K (which has a direct impact on the efficiency of the method),
and the computational cost associated to (G)PT. Intuitively, a
large K would provide a better mixing, however, it requires
a larger number of forward model evaluations, which tends
to be costly. We remark that such a trade-off between effi-
ciency and number of function evaluations is also present
in some advanced MCMC methods, such as Hamiltonian
Monte Carlo, where one needs to choose a number of time
steps for the time integration (see, e.g., Beskos et al. (2017)).
Furthermore, there is an additional constraint when choos-
ing Sx¢ = .Yk, and it is the permutation cost associated to
computing "W (@, o) and w, (). In particular, the com-
putation of either of those quantities has a complexity of K'!
thus, this cost will eventually surpass the cost of evaluat-
ing the forward model K times. This is illustrated in Fig. 1,
where we plot the cost per sample of two different posteriors
vs K. These posteriors are taken from the numerical exam-
ples in Sects. 5.5 and 5.7. The posterior in Sect. 5.5 is rather
inexpensive to evaluate, since one can compute the forward
map F analytically (the difficulty associated to sampling
from that posterior comes from its high multi-modality). On
the contrary, evaluating the posterior in Sect. 5.7 requires
numerically approximating the solution to a time-dependent,
second-order PDE, and as such, evaluating such a posterior
is costly. As we can see for K < 6, the computational cost
in both cases is dominated by the forward model evaluation.
Notice that for K < 9, the cost per sample from posterior
(27) is dominated by the evaluation of the forward model.

Thus, for high values of K, it is advisable to only con-
sider the union of properly chosen semi-groups A, B of .7k,

102
100
o)
£ 1072 Ll
=
—— Cost model §5.7
10-4 | —— Cost model §5.5
0 Permutation cost
Total cost §5.7
—— Total cost §5.5
10-6 - T T T T T
2 4 6 8 10
K

Fig. 1 Cost per sample vs K for Sx = .k for the forward model in
Sect. 5.5 and the forward model in 5.7

with A N B # @, such that A, B generates .Yk (i.e., if the
smallest semi-groups that contains A and B is .k itself),
and |A U B| < |%k| = K!, which is referred to as par-
tial Infinite Swapping in the continuous case (Dupuis et al.
2012). One particular way of choosing A and B is to con-
sider, for example, A to be the set of permutations that only
permute the indices associated with relatively low tempera-
tures while leaving the other indices unchanged, and B as the
set of permutations for the indices of relatively high tempera-
tures, while leaving the other indices unchanged. Intuitively,
swaps between temperatures that are, in a sense, “close” to
each other tend to be chosen with a higher probability. We
refer the reader to Dupuis et al. (2012) section 6.2 for a
further discussion on this approach in the continuous-time
setting. One additional idea would be to consider swap-
ping schemes that, for example, only permute states between
wi and Wiy, i+2, ..., Li+¢ for some user-defined £ > 1
and any given i = 1,2,..., K — 1. The intuition behind
this choice also being that swaps between posteriors that
are at close temperatures are more likely to occur than
swaps between posteriors with a high temperature differ-
ence. We intend to explore this further in depth in future
work.

We reiterate that the total number of temperatures K
depends heavily on the problem and the computational
budget available (Doll et al. 2012; Van Der Sluys et al.
2008; Yu et al. 2016) For the experiments considered in
the work we chose K = 4 or K = 5, which pro-
vide an acceptable compromise between acceleration and
cost.

@ Springer


https://doi.org/10.5281/zenodo.3700048

67 Page160f26

Statistics and Computing (2021) 31:67

5.2 Experimental setup

We now present an experimental setup common to all the
numerical examples presented in the following subsections.
In particular, all the experiments presented in this work uti-
lize a base method given by either RWM (for Experiments
5.3 through 5.6) or pCN (used in Experiment 5.7) for the
Markov transition kernels p. Furthermore, we take Sy = .k
for all experiments, where K = 5 for Experiment 5.5 and
K = 4 for the other 4 experiments. In addition, we follow
the rule of thumb of Earl and Deem (2005) for the choice
of temperatures, setting, for each experiment, 7, = ak_l,
k =1,..., K, for some positive constant a > 1. The par-
ticular choice of a is problem-dependent and it is generally
chosen so that wx becomes sufficiently simple to explore.
For each experiment we implement 5 MCMC algorithms
to sample from a given posterior 4 = 1, namely, the
base (untempered) method (either RWM or pCN), and such
a method combined with the standard PT algorithm (PT)
with Ny = 1, the PSDPT algorithm of Lacki and Miaso-
jedow (2016), and both versions of GPT. For our setting,
the tempered algorithms have a cost (in terms of number of
likelihood evaluations) that is K times larger than the base
method. Thus, to obtain a fair comparison across all algo-
rithms, we run the chain for the base method K times longer.
Lastly, given some problem-dependent quantity of interest O,
we assess the efficiency of our proposed algorithms to com-
pute the posterior expectation of Q by comparing the mean
square error (Experiments 5.3—-5.5), for which the exact value
of £, [Q] is known, or the variance (Experiments 5.6-5.7)
of the ergodic estimator Q obtained over Ny, independent
runs of each algorithm.

5.3 Density concentrated over a quarter
circle-shaped manifold

Let u be a probability measure that has density 7 with respect
to the uniform Lebesgue measure on the unit square ppr =
U([0, 1]%) given by

1
m(0) = - exp (1000067 + 63 — 0.8%)%) 119 1,

where 6 = (01, 0,), Z is the normalization constant, and
1jo,12 is the indicator function over the unit square. We
remark that this example is not of particular interest per se;
however, it can be used to illustrate some of the advantages of
the algorithms discussed herein. The difficulty of sampling
from such a distribution comes from the fact that its density
is concentrated over a quarter circle-shaped manifold, as can
be seen on the left-most plot in Fig. 2. This in turn will imply
that a single level RWM chain would need to take very small
steps in order to properly explore such density.
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Fig. 2 Tempered densities (with 71 = 1, T, = 17.1, Tz =
292.4, T4 = 5000) for the density concentrated around a quarter circle-
shaped manifold example. As we can see, the density becomes less
concentrated as the temperature increases, which allows us to use RWM
proposals with larger step sizes

We aim at estimating Q,' =Eu[0:] ~ éi, fori =1, 2. For
the tempered algorithms (PT, PSDPT, UGPT, and WGPT),
we consider K = 4 temperatures and choose T4 = 5000,
so that the tempered density 4 becomes sufficiently simple
to explore the target distribution. This gives 71 = 1, T, =
17.1, Tz = 292.4, T, = 5000.

We compare the quality of our algorithms by examining
the variance of the estimators éi, i = 1,2 computed over
Npns = 100 independent MCMC runs of each algorithm.
For the tempered algorithms, each estimator is obtained by
running the inversion experiment for N = 25, 000 samples
per run, discarding the first 20% of the samples (5000) as a
burn-in. Accordingly, we run the single-chain random walk
Metropolis algorithm for Ngwm = KN = 100, 000 iter-
ations, per run, and discard the first 20% of the samples
obtained with the RWM algorithm (20,000) as a burn-in.

The untempered RWM algorithm uses Gaussian propos-
als with covariance matrix YrwMm = plzlgxz, where Ipy7 is
the identity matrix in R2%2 and p12 = 0.022 is chosen in
order to obtain an acceptance rate of around 0.23. For the
tempered algorithms (i.e., PT, PSDPT, and both versions of
GPT), we use K = 4 RWM kernels pg, k = 1, 2, 3, 4, with
proposal density qprop,k(QIE"), ) =N (0,5"), pE1x2), where
pr is shown in Table 1. This choice of pi gives an acceptance
rate for each chain of around 0.23. Notice that p; corresponds
to the “step-size” of the single-temperature RWM algorithm.

Experimental results for the ergodic run are shown in Table
2. We can see how both GPT algorithms provide a gain over
RWM, PT and PSDPT algorithms, with the WGPT algo-
rithm providing the largest gain. Scatter plots of the samples
obtained with each method are presented in Fig. 3. Here, the
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Table 1 Step size of the RWM proposal distribution for the manifold
experiment

k=1 k=2 k=3 k=4
Pk 0.022 0.090 0310 0.650
RWM " PT PSDPT
UGPT WGPT

0.00 25 5 75 10 0.25  0.50

Fig.3 Scatter-plots of the samples from p obtained with each algorithm
on a single run. Top, from left to right: random walk Metropolis, PT and
PSDPT. Bottom, from left to right: UGPT, WGPT (after re-weighting
the samples), and WGPT, before re-weighting the samples

subplot titled “WGPT” (bottom row, middle) corresponds
to weighted samples from gy, with weight w as in (13),
while the one titled “WGPT (inv)” (bottom row, right) cor-
responds to samples from py without any post-processing.
Notice how the samples from the latter concentrates over a
thicker manifold, which in turn makes the target density eas-
ier to explore when using state-dependent Markov transition
kernels.

5.4 Multiple source elliptic BIP

We now consider a slightly more challenging problem, for
which we try to recover the probability distribution of the
location of a source term in a Poisson equation (Eq. 20),
based on some noisy measured data. Let (®, B(®), up) be
the measure space, set @ = [)::[O, 1]2, with Lebesgue (uni-
form) measure 1y, and consider the following Poisson’s
equation with homogeneous boundary conditions:

xeD, 0e®,

Au(x,0) = f(x,0), (20)
x € dD.

u(x,0) =0,

Such equation can model, for example, the electrostatic
potential u:=u(x, ) generated by a charge density f(x,0)
depending on an uncertain location parameter § € @. Data
y is recorded on an array of 64 x 64 equally-spaced points
in D by solving (20) with a forcing term given by

4
(i)\2 (i)\2
fx) = 26—1000[(961—-?1 )+ (x2—s5") ], (1)
i=1

where the true source locations s, i = 1,2, 3, 4, are given
by sV = (0.2,0.2), s@ = (0.2,0.8), s = (0.8,0.2),
and s = (0.8, 0.8). Such data is assumed to be polluted by
an additive Gaussian noise with distribution N (0, n2 Is4x64),
withn =3.2 x 1076, (which corresponds to a 1% noise) and
where lg4x64 1S the 64-dimensional identity matrix. Thus, we
set (Y, [|-lly) = R4 ||-|]), with [|A]| = (64n) "2 |A]|7.,
for some arbitrary matrix A € R®*64 " where ||| F is the
Frobenius norm. We assume a misspecified model where we
only consider a single source in Eq. (21). That, is, we con-
struct our forward operator F : ® +— Y by solving (20) with
a source term given by

fx,0) = o~ 1000001 =61)*+(x2—62)°] (22)

In this particular setting, this leads to a posterior distribution
with four modes since the prior density is uniform in the
domain and the likelihood has a local maximum whenever
01, 6r) = (sf’), sé')), i = 1,2,3,4. The Bayesian inverse
problem at hand can be understood as sampling from the
posterior measure 1, which has a density with respect to the
prior ppr = U (D) given by

1 1
7(0) = — exp (—5 ly — ﬂe)n%) ,

for some (intractable) normalization constant Z as in (4). We
remark that the solution to (20) with a forcing term of the
form of (22) is approximated using a second-order accurate
finite difference approximation with grid-size & = 1/64 on
each spatial component.

The difficulty in sampling from the current BIP arises from
the fact that the resulting posterior w is multi-modal and the
number of modes is not known apriori (see Fig. 4).

We follow a similar experimental setup to the previous
example, and aim at estimating Qi = Ey.l6] = OA, for
i = 1,2. We use K = 4 temperatures and Ny, = 100.
For the PT, PSDPT and GPT algorithms, four different tem-
peratures are used, with 71 = 1, T, = 7.36, T3 = 54.28,
and T4 = 400. For each run, we obtain N = 25, 000 sam-
ples with the PT, PSDPT, and both GPT algorithms, and
N = 100, 000 samples with RWM, discarding the first 20%
of the samples in both cases (5000, 20000, respectively) as
a burn-in. On each of the tempered chains, we use RWM
proposals, with step-sizes shown in Table 3. This choice of
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Table 2 Results for the density

concentrated around a g/[ean P g/ISE P g/ISERWM / MgE
circle-shaped manifold 1 2 ! 2 1 2
experiment. As we can see, both —— pyyy 0.50996 0.50657 0.00253 0.00261 1.00 1.00
GPT algorithms provide an
improvement over PT, PSDPT PT 0.50978 051241 0.00024 0.00021 10.7 11.0
and RWM. The computational PSDPT 0.50900 0.50956 0.00027 0.00026 9.53 10.2
C;’St l?tg"mpafable across all UGPT 0.50986 0.50987 0.00016 0.00016 16.1 16.4
algorithms
& WGPT 0.51062 0.50838 0.00015 0.00014 16.9 18.4
pi, Ty = 1.0 » RWM PT PSDPT
) - 360
320 ) o - o @ @ o
0n- - 28()
0.75 240 0.6 -
= ).50 =200 &
= .:Iilil = ; @ o [0} o (o] (]
0.25 l?,yl ; ,
i : o o
).00 0 0 5 UGPT WGPT
0.0 0.5 1.0
lﬂ] ) Q o o Q
3, T; = 54.28 ne
1.00 -, 0.
® o 18 o]

#9

000 ~ ' v = 0.00 ' ]
0.0 0.5 1.0 0.0 0.5 1.0
o 0

Fig.4 True tempered densities for the elliptic BIP example. Notice that
the density is not symmetric, due to the additional random noise

Table 3 Step size of the RWM proposal distribution for the elliptic BIP
experiment

Pk, Tempered 0.030 0.100 0.400 0.600
Pk,RWM 0.160 - — _

step size provides an acceptance rate of about 0.24 across
all tempered chains and all tempered algorithms. For the
single-temperature RWM run, we choose a larger step size
(orwM = 0.16) so that the RWM algorithm is able to explore
the whole distribution. Such a choice, however, provides a
smaller acceptance rate of about 0.01 for the single-chain
RWM.

Experimental results are shown in Table 4. Once again, we
can see how both GPT algorithms provide a gain over RWM
and both variations of the PT algorithm, with the WGPT algo-
rithm providing a larger gain. Scatter-plots of the obtained
samples are shown in Fig. 4.
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Fig.5 Scatterplots of the samples from p obtained with different algo-
rithms on a single run. Top, from left to right: random walk Metropolis,
PT and PSDPT. Bottom, from left to right: UGPT, WGPT (after re-
weighting the samples), and WGPT, before re-weighting the samples.
As we can see, WGPT (before re-weighting) is able to “connect” the
parameter space

5.5 1D wave source inversion

We consider a small variation of example 5.1 in Motamed
and Appelo (2019). Let (®, B(®), 1pr) be a measure space,
with @ = [-5, 5] and uniform (Lebesgue) measure fp, and
let I = (0, 7] be a time interval. Consider the following
Cauchy problem for the 1D wave equation:

utl(-x7 t, 9) - u.x)((-xa ta 9) = 05
u(x,0,0) = h(x, 0),
ul(x’ov 9) =O’

(x,t,0) eRx I x O,

(x,t,0) e Rx {0} x ©,

(x,t,0) e Rx {0} x ©.
(23)

Here, h(x,0) acts as a source term generating a initial
wave pulse. Notice that Eq. (23) can be easily solved using
d’Alembert’s formula, namely

u(x,t,0) = % (h(x —t,0) +h(x +1,0)).

Synthetic data y is generated by solving Eq. (23) with initial
data
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Table 4 Results for the elliptic

BIP problem. The computational Mean MSE MSErwm/MSE
- 61 0 61 (% 01 6
cost is comparable across all
algorithms, given that the costof gy 0.48509 0.51867 0.00986 0.01270 1.00 1.00
each iteration is dominated by
the cost of solving the PT 0.48731 0.50758 0.00042 0.00036 23.0 29.2
underlying PDE PSDPT 0.48401 0.50542 0.00079 0.00099 12.4 10.7
UGPT 0.48624 0.50620 0.00038 0.00027 259 38.2
WGPT 0.48617 0.50554 0.00025 0.00023 38.6 44.9
h(x, 6. 6) = 1 (e—IOO(x—91—0.5)2 1 o100 —61)?
Vb ) 600
1o 100G=01405)7 | ,~100(x—0,—0.5)> =
S 400
~100(x—62)> | —100(x—6240.5)> &
Lo 10066207 4, x—6,+0. ) ’
200 —
with 6 = —3, 6, = 3 and observed at N = 11 equally- ‘4 ‘2 (‘) ; 21

spaced receiver locations between Ry = —5 and Ry = 5 on
Nt = 1000 time instants between t = 0 and T = 5. The
signal recorded by each receiver is assumed to be polluted by
additive Gaussian noise (0, 77211000><1000), with n = 0.01,
which corresponds to roughly 1% noise. We set (Y, |||ly) =
(RIIXIOOO’ ””2)’ with

Nr Nr

IAIS = /Nem 2D A7

i=1 j=1

A e RIX1000 Once again, we assume a misspecified model
where we construct our forward operator 7 : @ +— Y by
solving (23) with a source term given by

h(x, ) = (e—loo(x—ev—o.S)2

+e—100(x—0)2 + 6—100(x—9+045)2>

The Bayesian inverse problem at hand can be understood as
sampling from the posterior measure p, which has a density
with respect to the prior up = U([—5, 5]) given by

6) = 2 ! FO)I3
m(0) = zexp(—iﬂy— ( )||2)
1
= Zexp (=2 (0: 7)), 24)

for some (intractable) normalization constant Z as in (4).
The difficulty in solving this BIP comes from the high multi-
modality of the potential @ (6; y), as it can be seen in Fig. 6.
This, shape of @ (9; y) makes the posterior difficult to explore
using local proposals.

In this case, we consider K = 5, andset Ty =1, T, =
5, T3 = 25, T4 = 125 and T5 = 625. Notice that from
Fig. 1, the computational cost per sample is dominated by
the evaluation of (24) for values of K < 6. Once again, we

Fig.6 Multi-modal potential for the Cauchy problem. Notice the min-
imaaround ® = —3 and 6 =3

Table 5 Step size of the RWM proposal distribution for the Cauchy
BIP experiment

k=1 k=2 k=3 k=4 k=5
Pk, Tempered 0.02 0.05 0.10 0.50 2.0
Pk, RWM 0.5 - — _ _

obtain N = 25, 000 samples with the PT, PSDPT, and both
GPT algorithms, and N = 125, 000 samples with RWM,
discarding the first 20% of the samples in both cases (5000,
25000, respectively) as a burn-in. On each of the tempered
chains, we use RWM proposals, with step-sizes shown in
Table 5. This choice of step size provides an acceptance rate
of about 0.4 across all tempered chains and all tempered
algorithms. The choice of step-size for the RWM algorithm
is done in such a way that it can “jump” modes, which are at
distance of roughly 1/2.

We consider Q = 6 as a quantity of interest. Experimental
results are shown in Table 6. Once again, we can see how
both GPT algorithms provide a gain over RWM and both
variations of the PT algorithm, with the WGPT algorithm
providing the largest gain. Notice that, given the high muti-
modality of the posterior at hand, the simple RWM algorithm
is not well-suited for this type of distribution, as it can be
seen from its large variance; this suggests that the RWM
usually gets “stuck” at one mode of the posterior. Notice
that, intuitively, due to the symmetric nature of the potential,
one would expect the true mean of 6 to be close to 0. This
value was computed by means of numerical integration and
is given by E,[0] = 0.08211.
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Table 6 Results for the 1D Cauchy BIP problem. The computational
cost is comparable across all algorithms

Mean MSE MSErwmMm/MSE
RWM -0.10120 9.36709 1.000
PT 0.05118 0.03681 254.5
PSDPT 0.15840 0.21701 43.20
UGPT 0.08976 0.03032 308.9
WGPT 0.06149 0.02518 372.0

5.6 Acoustic wave source inversion

We consider a more challenging problem, for which we try
to recover the probability distribution of the spatial loca-
tion of a (point-like) source term, together with the material
properties of the medium, on an acoustic wave equation
(Eqg. 25), based on some noisy measured data. We begin
by describing the mathematical model of such wave phe-
nomena. Let (®, B(O®), Mpr) be the measure space , with
Lebesgue (uniform) measure fip, set D:=[0, 3] x [0, 2],
dD = Iy U Faps, IN N Tans = 0, ITwl, [Tans] > 0,
and define ® = D x ®y x O, where O, = [6, 14],
©p = [4500, 5500]. Here, we are considering a rectangu-
lar spatial domain D, with the top boundary denoted by I'y
and the side and bottom boundaries denoted by I'apg. Lastly,
let 0:=(s1, 52, @, B) € ©. Consider the following acoustic
wave equation with absorbing boundary conditions:

o?uy; —V-(B*Vu)=f, inD x (0,T) x O,
inD x {0} x O,
onIN x (0,7) x O,
on I'aps X (0, T) x O,

u=u; =0,
B*Vu-n =0,
B>Vu -h = —apu;,

(25)

whereu = u(x,t,6),and f = f(x,t, 0). Here the boundary
condition on the top boundary 'y corresponds to a Neumann
boundary condition, while the boundary condition on I 'apg
corresponds to the so-called absorbing boundary condition, a
type of artificial boundary condition used to minimize reflec-
tion of wave hitting the boundary. Data y € Y is obtained by
solving Eq. (25) with a force term given by

f(.x t 9) — 101le_ﬁ[(xl_sl)2+(x2_52)2]

x (1 =2 - 10007 2¢2)e 2100072 (26)

with a true set of parameters ® > 6*:=(s1, 52, @, B) given
by s; = 1.5,50 = 1.0, « = 10, § = 5000, and observed on
Np = 3 different receiver locations R; = (1.0,2.0), R, =
(1.5,2.0), Rz = (2.0,2.0) at Ny = 117 equally-spaced
time instants between ¢+ = 0 and ¢t = 0.004. In physical
terms, the parameters s1, s represent the source location,
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while the parameters «, 8 are related to the material prop-
erties of the medium. Notice that, on a slight abuse of
notation, we have used the symbol  to represent the number
3.14159... in Eq. (26) and it should not be confused with
the symbol for density. The data measured by each receiver
is polluted by additive Gaussian noise A/ (0, n21 117x117)»
with n = 0.013, which corresponds to roughly a 2%
noise. Thus, we have that (Y, |-Ily) = ®R>!17 |Ix),
where || A} :=(v/Ngm) ™2 Y18 Y07 A2 . Thus, the for-
ward mapping operator F : @ — Y canbe understood as the
numerical solution of Eq. (25) evaluated at 117 discrete time
instants at each of the 3 receiver locations. Such a numeri-
cal approximation is obtained by the finite element method
using piece-wise linear elements and the time stepping is
done using a Forward Euler scheme with sufficiently small
time-steps to respect the so-called Courant-Friedrichs-Lewy
condition (Quarteroni and Quarteroni 2009). This numeri-
cal solution is implemented using the Python library FEniCS
(Logg et al. 2012), using 40x40 triangular elements. The
Bayesian inverse problem at hand can thus be understood as
sampling from the posterior measure p, which has a density
with respect to the prior up, = U(E) given by

g L 1 P
7 ( )—Eexp(—zlly— ( )Ilz>-

The previous BIP presents two difficulties; on the one
hand, Eq. (25) is, typically, expensive to solve, which in turn
translates into expensive evaluations of the posterior density.
On the other, the log-likelihood has an extremely compli-
cated structure, which in turn makes its exploration difficult.
This can be seen in Fig. 7, where we plot of the log-likelihood
for different source locations (s, s7) and for fixed values of
the material properties « = 10, 8 = 5000. More precisely,
we plot @ ((s1, 52); ¥):=— % lly — F(s1, 52, 10, 5000)|3; on
a grid of 100 x 100 equally spaced points (s, s2) in D. It can
be seen that, even though the log-likelihood has a clear peak
around the true value of (sy, s7), there are also regions of rel-
atively high concentration of log-probability, surrounded by
regions with a significantly smaller log-probability, making
it a suitable problem for our setting.

Following the same set-up of previous experiments, we
aim at estimating Qi = E, 6] = @, fori = 1,2. Once
again, we consider K = 4 temperatures for the tempered
algorithms (PT, PSDPT, UGPT, and WGPT), and set tem-
peratures to 71 = 1, T» = 7.36, Tz = 54.28, T4 = 400. We
compare the quality of our algorithms by examining the vari-
ance of the estimators él , i = 1,2 computed over Npyps = 50
independent MCMC runs of each algorithm. For each run, we
run the tempered algorithms obtaining N = 7, 000 samples,
discarding the first 20% of the samples (1400) as a burn-in.
For the RWM algorithm, we run the inversion experiment
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Fig.7 Plot of the log-likelihood for different values of s, s> and fixed
values of @ = 10 and B8 = 5000. The magenta points represent the
reciever locations Ry, Ry, R3. The black point represents the true loca-
tion of the source (s, s2) = (1.5, 1.0)

Table 7 Step size of the RWM proposal distribution for the acoustic
BIP experiment. Here Diag(dy, da, . .., dy) is to be understood as the

N x N diagonal matrix with entries dy, do, ..., dyN
1/2 172
Ck ,Tempered Ck ,RWM
k=1 Diag(0.01, 0.01, 0.2, 5) Diag(0.02,0.02, 0.2, 5)
k=2 Diag(0.06, 0.06, 0.4, 14) -
k=3 Diag(0.3, 0.3, 0.6, 20) -
k=4 Diag(1, 1, 1, 50) -

for Npwm = KN = 28, 000 iterations, and discard the first
20% of the samples obtained (5600) as a burn-in.

Eachindividual chain is constructed using Gaussian RWM
proposals gprop k (0f, ) = N (O}, Cr), k = 1,2,3,4, with
covariance Cy described in Table 7. The covariance is tuned
in such a way that the acceptance rate of each chain is around
0.2. The variance of the estimators obtained with each method
is presented in Table 8. Once again, our GPT algorithms out-
perform all other tested methods for this particular setting.
In particular, our methods provide huge computational gains
when compared to RWM and the PSDPT algorithm of Lacki
and Miasojedow (2016), as well as some moderate compu-
tational gains when compared to the standard PT.

5.7 High-dimensional acoustic wave inversion

Lastly, we present a high-dimensional example for which we
try to invert for the material properties 8% in (25). For sim-
plicity, we will consider fixed values of « = 1, s = 1.5, and
sp = 1. In this case, we set /32 =10+ ﬁz(x), where ﬁ(x)
is taken to be a realization of a random field discretized on a
mesh of Ny x N, triangular elements. This modeling choice
ensures that 2 is lower bounded. In this case, we will invert
for the nodal values of (the finite element discretization of)
B, which will naturally result in a high-dimensional problem.
We remark that one is usually interested in including the ran-
domness in 2, instead of B; however, we purposely choose
to do so to induce an explicitly multi-modal posterior, and

as such, to better illustrate the advantages of our proposed
methods when sampling from these types of distributions.

We begin by formalizing the finite-element discretization
of the parameter space (see e.g., Bui-Thanh and Nguyen
(2016) for a more detailed discussion).

Let D = [0,3] x [0, 2], denote the physical space of
the problem and let V}, be a finite-dimensional subspace of
L, (D) arising from a given finite element discretization. We
write the finite element approximation ,éh eV of ﬁ as

NV
Bx) ~ Br(x) = bugpu(x),

n=1

where {¢} ,}zv;l are the Lagrange basis functions corresponding
to the nodal points {xn},];/;l, b1, ....by)T =10 € RV is
the set of nodal parameters and N, corresponds to the number
of vertices used in the FE discretization. Thus, the problem
of inferring the distribution of 8 given some data y, can be
understood as inferring the distribution of 8 given y. For our
particular case, we will discretize D using 28 x 28 (non-
overlapping) piece-wise linear finite elements, which results
in Ny, = 841 and as such ® = R3*!, We consider a Gaussian
prior ppr,.co = N (0, A~?), where A is a differential operator
acting on L, (D) of the form

Ai=—aV - (HV)+dI, a,d >0,

together with Robin boundary conditions V(-)-n+ Vad )=
0, where, following Villaet al. (2021), H is taken of the form

(el sin(£) + e cos2(£)

(e1 — ep) sin(£) cos(£)
(e1 — e2) sin(€) cos(¥) '

el cosz(Z) + e; sin? €3}

Here H models the spatial anisotropy of a Gaussian Random
field sampled from ppr oo. It is known that for a two-
dimensional (spatial) space, the covariance operator A~ is
symmetric and trace-class (Bui-Thanh and Nguyen 2016),
and as such, the (infinite-dimensional) prior measure is well-
defined. Thus, we set

lé(x )~ Mpr,o00,

which in turn induces the discretized prior:

B () ~ ppri=N (0, A2,

where A;z is a finite-element approximation of A using
28 x 28 (non-overlapping) piece-wise linear finite elements.
Samples from p are obtained using the FEniCS package

(Logg et al. 2012) and the hIPPY1ib library Villa et al.
(2021).
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Table 8 Results for the acoustic

BIP problem. Once again, we i\/lean P ;/ar s ;/arRWM/ var s
can see that both GPT algorithm ! 2 ! 2 ! 2
provide an improvement over RWM 1.33801 1.54293 9.86 x 107! 8.21x1072 1.000000 1.000
RWM, PT and PSDPT. The
computational cost is PT 1.50121 1.00829 6.61 x 1070 2.77 x 107 149136.1 296.2
comparable across all PSDPT 1.39775 1.23119 2.48 x 107! 6.54 x 1072 3.900000 1.200
algorithms, given that the cost o ;gpy 1.50177 1.00711 272 x 10 238 x 1074 361744.5 345.0
each iteration is dominated by 6 .
the cost of solving the WGPT 1.50174 1.00601 2.08 x 10 1.46 x 10 4721332 558.6
underlying PDE
"’“_"' s v e /e I"““‘ The previous BIP has several difficulties; clearly, it is a
- P s high-dimensional posterior. Furthermore, just as in the pre-
1.50 - -1.68 . . .
H vious example, the underlying mathematical model for the
1.25 2 08 . .
x forward operator is a costly time-dependent PDE. By choos-
£1.00 -0.00 . . A . .
o | ing to invert for B, ~ up (instead of ,3,3 ~ f2), and since
075 - -—08 . . . .
' iy Mpr 18 centered at zero, we induce a multi-modal posterior,
0.50 - _168 )
o I o indeed, if the posterior concentrates around 8 it will also
000 ‘ ‘ =18 - B have peaks at any other B/ obtained by flipping the sign of
0. A

0 0.5 1.0 15 20 25 3.0

Fig.8 True field /SA,’{ (x). Notice the anisotropy on the field. The magenta
points represent the receiver locations. The black line represents the
zero-level set of the field

We follow an approach similar to our previous example.
We collect data y € Y by solving Eq. (25) with a force
term given by (26) and a true field ,3;; ~ ppr witha = 0.1,
d =05, =m/4,e; =2and e; = 0.5. Such a realization
of ,3;; is shown in Fig. 8.

Furthermore, data is observed at N = 5 different
receiver locations Ry = (1.0, 2.0), R, = (1.25,2.0), R3 =
(1.5,2.0), R4 = (1.75,2.0), and Rs = (2.0,2.0) at Ny =
600 equally-spaced time instants between t = 0 and t = 0.6.
The data measured by each receiver is polluted by an (inde-
pendent) additive Gaussian noise n ~ N0, ofoise I600x600)>
with o = 0.021, which corresponds to roughly a 0.5% noise.
Thus, we have that (Y, ||-[|y) = (R>*%%0 ||.||5,). Similarly as
in Sect. 5.6, the forward mapping operator F : & +— Y can
be understood as the numerical solution of Eq. (25) evalu-
ated at 600 discrete time instants at each of the 5 receiver
locations. Numerical implementation follows a similar set-
up as in Sect. 5.6, however, for simplicity, we use 28 x 28
triangular elements to approximate the forward operator F.
The Bayesian inverse problem at hand can thus be under-
stood as sampling from the posterior measure (., which has
a Radon-Nikodym derivative with respect to the prior fip
given by

dp
ditpr

1 1
7(6) = (e)zgexp<—5||y—f<e>u%). (27)
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B;; in a concentrated region separated by the zero level set of
,3;; (we identify 7 regions in Fig. 8). This can be seen in Fig. 9,
where we plot 4 posterior samples ,3h ~ . Notice the change
in sign between some regions. Lastly, as a quantities of inter-
est, we will consider Q; = f D exp(,@ (x))dx and @> =
exp(B(l .5, 1)). We remark that, although these quantities of
interest do not have any meaningful physical interpretation,
they are, however, affected by the multi-modality of the pos-
terior, and as such, well suited to exemplify the capabilities
of our method.

Given the high-dimensionality of the posterior, we present
a slightly different experimental setup in order to estimate
E,l19i] = Qi, i = 1, 2. In particular, we will use the pre-
conditioned Crank-Nicolson (pCN) as a base method, instead
of RWM, for the transition kernel p. We compare the quality
of our algorithms by examining the variance of the estimators
Qi computed over Nyns = 50 independent MCMC runs of
each algorithm, with K = 4 temperatures for the tempered
algorithms given by 71 = 1, T, = 4.57, T3 = 20.89, Ty =
100. For the tempered algorithms, each estimator is obtained
by running the inversion experiment for N = 4, 800 samples,
discarding the first 20% of the samples (800) as a burn-in. For
the untempered pCN algorithm, we run the inversion experi-
ment for Nyen = KN = 19, 200 iterations, and discard the
first 20% of the samples obtained (3840) as a burn-in.

Each individual chain is constructed using pCN propos-
als gprop 4 (0F, ) = N'(J1 — 267, p2 A%, k = 1,2,3, 4,
with py described in Table 9. The simple, un-tempered pCN
algorithm is run with a step size given by p = pj. The values
of py are tuned in such a way that the acceptance rate of each
chain is around 0.3 and are reported in Table 9. The variance
of the estimators obtained with each method is presented in
Table 10. Once again, even for this high-dimensional, highly
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Fig.9 Posterior samples B ~ 11 obtained with the UW GPT algorithm.
Notice the resemblance to Fig. 8
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multi-modal case, our proposed methods perform consider-
ably better than the other algorithms.
6 Conclusions and future work

In the current work, we have proposed, implemented, and
analyzed two versions of the GPT, and applied these meth-

Table9 Values of p for the pCN kernel for the high-dimensional wave
inversion problem

k=1 k=2 k=3 k=4

Pk 0.1 0.2 0.4 0.8

ods to a BIP context. We demonstrate that such algorithms
produce reversible and geometrically-ergodic chains under
relatively mild conditions. As shown in Sect. 5, such sam-
pling algorithms provide an attractive alternative to the more
standard Parallel Tempering when sampling from difficult
(i.e., multi-modal or concentrated around a manifold) poste-
riors. We remark that the framework considered here-in can
be combined with other, more advanced MCMC algorithms,
such as, e.g., the Metropolis-adjusted Langevin algorithm
(MALA), or the Delayed Rejection Adaptive Metropolis
(DRAM), for example Haario et al. (2006).

We intend to carry out a number of future extensions of
the work presented herein. One of our short-term goals is to
extend the methodology developed in the current work to a
Multi-level Markov Chain Monte Carlo context, as in Dod-
well et al. (2015); Madrigal-Cianci et al. (2021). In addition,
from a theoretical point of view, we would like to investigate
the role that the number of chains and the choice of temper-
atures play on the convergence of the GPT algorithm, as it
has been done previously for Parallel Tempering in Woodard
et al. (2009). Improving on the estimates presented here
would likely be the focus of future work. We also believe that
by excluding the identity permutation (i.e., id ¢ Sk) on the
UGPT, one could obtain a swapping kernel which is better in
the so-called Peskun sense, see (Andrieu and Roberts 2009)
for more details. We intend to carry further numerical experi-
ments to better understand and compare swapping strategies.
Furthermore, from a computational perspective, given that
the framework presented in this work is, in principle, dimen-
sion independent, the methods explored in this work can also
be combined with dimension-independent samplers such as
the ones presented in Beskos et al. (2017); Cui et al. (2016),
thus providing a sampling algorithm robust to both multi-
modality and large dimensionality of the parameter space.
Given the additional computational cost of these methods, a
non-trivial coupling of GPT and these methods needs to be
devised. Lastly, we aim at applying the methods developed in
the current work to more computationally challenging BIP,
in particular those arising in seismology and seismic source
inversion, where it is not uncommon to find multi-modal pos-
terior distributions when inverting for a point source.
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Table 10 Results for the

high-dimensional acoustic BIP l\flean A \far A YMPCN /Var A
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Appendix
A Proof of Proposition 7

Proof This proof is partially based on the proof of Theorem
l_.2 in Madras and Randall (2002). Let @, y € @ and define
Sfo:=my (f). The right-most inequality follows from the fact
that

1=V,Lw[f] = / £(6)*ry(d6)

_ |S;<| 3 / F2O)1, (d0)

oeSk

1 1
= 5 (Vi 111+ 72) = 5 2 Vel

O'ES]( OES](

We follow a procedure similar to the proof of Madras and
Randall (2002) Theorem 1.2 for the lower bound on the vari-
ance. We introduce an ordering on Sx = 01,02, ..., 0|sg|,
define the matrix C € RISKIXISk| a5 the matrix with entries

= / / (F®) = £ 10, @)y, (),
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where C;; =2V, _[f]and
J

ISk |

1
ZZZV/LW[.f]:/ / GO = 10 | 157 3o @0

ISk |
IS 2 Zua,( )
:;mcij- (28)

We thus aim at finding an upper bound of Eq. (28) in terms
of ISk D™ X pesy Vol f1

By assumption C3, for any o0;,0; € Sk the densities
Mo, Toj of Ro;s Mo, (with respect to [Lpr) have an overlap
Agi,gj > (. For brevity, in the following we use the shorthand
notation A; ; for Ay, & ; Thus, we can find densities

”ij:ZAi_jloglg}({n”i 0),75;(0)}. 0, ¥

suchthat wo;, = Ajjn;; + (1 — Ajj)e;, and o, = Aijn;; +

(1 — A;j)¥ ;. Thus, integrating over 6K, we get for the
diagonal entries of the C matrix:

Cii =2V, [f]
- / (FO) — FOD? (A ®) + (1 — Ai))p,®))
X (Aijni;(9) + (1= Aip)@; () B (d0) e (dy)
/ (FO) = FO AL 01 (9) e (A0) pe (dy)
+ / (f(0) — F)*Aij (1 = Aip)@i (¥)1;; (O) ppr (A0) e (dy)
+ / (f(0) — F)*Aij (1 = Aij)@; (), (¥t (A0) e (dy)
+ / (£0) = FON* (= Ai)) 20 (3)@; () (AO) 1 (dy)
=247, Vy, 114201 = Ai)*Vy, [F14+ 245 (1 = Aj)

X/ (FO) = FD)*01;0)9; (O) e (0) e (dy). (29)

Notice that Eq. (29) implies that

/ / (FO) — £ *10)9; O)ptpr (A6) i (dy)
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Vi, Lf1 = A5V, Lf]
<
B Aij(1 = Aij)

(30)

As for the non-diagonal entries of C, we have

Cij = / (f 0) = F)* [Aijni; 0)
+ (1= Ai)e;(0)] (Aijnij ()
+1 - A,‘j)l/fj (y))ﬂpr(do)“pr(dy)
=24}y, [f]

- Ay / [ (F®) — F(0P0 O (9 (@0 (dy)
+ Aij (1 = Aij) f f f6) - f(»)°
X (00U ;(¥) + 0;; ()9 (0)) e (A0) (). (€29)

We can bound the second term in the previous expression
using Cauchy-Schwarz. Let z € @ Then,

/ / (fO) = F(0))20;O)F ; (3) e (A0) e (dy)

= / / (fO) = @)+ f@ — FON*0; 0¥ ;3 (2)
X e (A0 (dy) py (dz)

<2 / / / ((FO) = f @)+ @—F(3)) 0;0)¥ ; (¥)n;;(2)
X e (A0 (dy) sy (dz)

= Zf/(f((i) — £(@)70;0)n;) (2 (40) . (dz)

+2//(f(y) — F@) ;0 @R AWy (dz).  (32)

Thus, from Egs. (30), (31), and (32) we get

Cij 247V, [F1+ Q01— Aip)* + Ai;(1 = Aij))
x ( J[ @ =57 0w,

+ Nij i (0)) ﬂpr(dg)ﬂpr (d)’))
:2Af/-V1,,.j [f1+@2—AijpA — A;p)

(Vi LT = A2,V LF1+ Vi, L1 = AZ V3, 1)

) Aij(1 = Aij)
2 — Ajj
= TJ (vﬂo,- L1+ Vi, [f]) —4A;;(1 = Aip)Vy [ f]
ij J .
2 — Ajj
ETU (vll'(;i [f1+ V,ng [f]) , (33)

since A;; € (0, 1) Vi, j. Finally, from Egs. (28) and (33) we
get that

1 1
1=V, ==Y ——Cj
oy L] 2;|SK|2 i

11 2— Ay
- v v )
A ,-;1 o (Voo 14+ Vi 1)
2- A, 1 ISk |

with A= min{A;;}
i,j=12,..,|5k|
C3. Notice that we have used (33) for the first inequality,

including the case i = j, in the previous equation. This in
turn yields the lower bound

> 0, and A; ; as in Assumption

Am 1
0 < < Vi [f]
2—An ~ \ 15kl ZS g
]
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