98 research outputs found

    The Role of Stimulus Salience and Attentional Capture Across the Neural Hierarchy in a Stop-Signal Task

    Get PDF
    Inhibitory motor control is a core function of cognitive control. Evidence from diverse experimental approaches has linked this function to a mostly right-lateralized network of cortical and subcortical areas, wherein a signal from the frontal cortex to the basal ganglia is believed to trigger motor-response cancellation. Recently, however, it has been recognized that in the context of typical motor-control paradigms those processes related to actual response inhibition and those related to the attentional processing of the relevant stimuli are highly interrelated and thus difficult to distinguish. Here, we used fMRI and a modified Stop-signal task to specifically examine the role of perceptual and attentional processes triggered by the different stimuli in such tasks, thus seeking to further distinguish other cognitive processes that may precede or otherwise accompany the implementation of response inhibition. In order to establish which brain areas respond to sensory stimulation differences by rare Stop-stimuli, as well as to the associated attentional capture that these may trigger irrespective of their task-relevance, we compared brain activity evoked by Stop-trials to that evoked by Go-trials in task blocks where Stop-stimuli were to be ignored. In addition, region-of-interest analyses comparing the responses to these task-irrelevant Stop-trials, with those to typical relevant Stop-trials, identified separable activity profiles as a function of the task-relevance of the Stop-signal. While occipital areas were mostly blind to the task-relevance of Stop-stimuli, activity in temporo-parietal areas dissociated between task-irrelevant and task-relevant ones. Activity profiles in frontal areas, in turn, were activated mainly by task-relevant Stop-trials, presumably reflecting a combination of triggered top-down attentional influences and inhibitory motor-control processes

    Alcohol affects neuronal substrates of response inhibition but not of perceptual processing of stimuli signalling a stop response

    Get PDF
    Alcohol impairs inhibitory control, including the ability to terminate an initiated action. While there is increasing knowledge about neural mechanisms involved in response inhibition, the level at which alcohol impairs such mechanisms remains poorly understood. Thirty-nine healthy social drinkers received either 0.4g/kg or 0.8g/kg of alcohol, or placebo, and performed two variants of a Visual Stop-signal task during acquisition of functional magnetic resonance imaging (fMRI) data. The two task variants differed only in their instructions: in the classic variant (VSST), participants inhibited their response to a “Go-stimulus” when it was followed by a “Stop-stimulus”. In the control variant (VSST_C), participants responded to the “Go-stimulus” even if it was followed by a “Stop-stimulus”. Comparison of successful Stop-trials (Sstop)>Go, and unsuccessful Stop-trials (Ustop)>Sstop between the three beverage groups enabled the identification of alcohol effects on functional neural circuits supporting inhibitory behaviour and error processing. Alcohol impaired inhibitory control as measured by the Stop-signal reaction time, but did not affect other aspects of VSST performance, nor performance on the VSST_C. The low alcohol dose evoked changes in neural activity within prefrontal, temporal, occipital and motor cortices. The high alcohol dose evoked changes in activity in areas affected by the low dose but importantly induced changes in activity within subcortical centres including the globus pallidus and thalamus. Alcohol did not affect neural correlates of perceptual processing of infrequent cues, as revealed by conjunction analyses of VSST and VSST_C tasks. Alcohol ingestion compromises the inhibitory control of action by modulating cortical regions supporting attentional, sensorimotor and action-planning processes. At higher doses the impact of alcohol also extends to affect subcortical nodes of fronto-basal ganglia- thalamo-cortical motor circuits. In contrast, alcohol appears to have little impact on the early visual processing of infrequent perceptual cues. These observations clarify clinically-important effects of alcohol on behaviour

    Cognitive Control Reflects Context Monitoring, Not Motoric Stopping, in Response Inhibition

    Get PDF
    The inhibition of unwanted behaviors is considered an effortful and controlled ability. However, inhibition also requires the detection of contexts indicating that old behaviors may be inappropriate – in other words, inhibition requires the ability to monitor context in the service of goals, which we refer to as context-monitoring. Using behavioral, neuroimaging, electrophysiological and computational approaches, we tested whether motoric stopping per se is the cognitively-controlled process supporting response inhibition, or whether context-monitoring may fill this role. Our results demonstrate that inhibition does not require control mechanisms beyond those involved in context-monitoring, and that such control mechanisms are the same regardless of stopping demands. These results challenge dominant accounts of inhibitory control, which posit that motoric stopping is the cognitively-controlled process of response inhibition, and clarify emerging debates on the frontal substrates of response inhibition by replacing the centrality of controlled mechanisms for motoric stopping with context-monitoring

    Rule-Guided Executive Control of Response Inhibition: Functional Topography of the Inferior Frontal Cortex

    Get PDF
    The human inferior frontal cortex (IFC) is a large heterogeneous structure with distinct cytoarchitectonic subdivisions and fiber connections. It has been found involved in a wide range of executive control processes from target detection, rule retrieval to response control. Since these processes are often being studied separately, the functional organization of executive control processes within the IFC remains unclear.We conducted an fMRI study to examine the activities of the subdivisions of IFC during the presentation of a task cue (rule retrieval) and during the performance of a stop-signal task (requiring response generation and inhibition) in comparison to a not-stop task (requiring response generation but not inhibition). We utilized a mixed event-related and block design to separate brain activity in correspondence to transient control processes from rule-related and sustained control processes. We found differentiation in control processes within the IFC. Our findings reveal that the bilateral ventral-posterior IFC/anterior insula are more active on both successful and unsuccessful stop trials relative to not-stop trials, suggesting their potential role in the early stage of stopping such as triggering the stop process. Direct countermanding seems to be outside of the IFC. In contrast, the dorsal-posterior IFC/inferior frontal junction (IFJ) showed transient activity in correspondence to the infrequent presentation of the stop signal in both tasks and the left anterior IFC showed differential activity in response to the task cues. The IFC subdivisions also exhibited similar but distinct patterns of functional connectivity during response control.Our findings suggest that executive control processes are distributed across the IFC and that the different subdivisions of IFC may support different control operations through parallel cortico-cortical and cortico-striatal circuits

    On the Role of the Striatum in Response Inhibition

    Get PDF
    BACKGROUND: Stopping a manual response requires suppression of the primary motor cortex (M1) and has been linked to activation of the striatum. Here, we test three hypotheses regarding the role of the striatum in stopping: striatum activation during successful stopping may reflect suppression of M1, anticipation of a stop-signal occurring, or a slower response build-up. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-four healthy volunteers underwent functional magnetic resonance imaging (fMRI) while performing a stop-signal paradigm, in which anticipation of stopping was manipulated using a visual cue indicating stop-signal probability, with their right hand. We observed activation of the striatum and deactivation of left M1 during successful versus unsuccessful stopping. In addition, striatum activation was proportional to the degree of left M1 deactivation during successful stopping, implicating the striatum in response suppression. Furthermore, striatum activation increased as a function of stop-signal probability and was to linked to activation in the supplementary motor complex (SMC) and right inferior frontal cortex (rIFC) during successful stopping, suggesting a role in anticipation of stopping. Finally, trial-to-trial variations in response time did not affect striatum activation. CONCLUSIONS/SIGNIFICANCE: The results identify the striatum as a critical node in the neural network associated with stopping motor responses. As striatum activation was related to both suppression of M1 and anticipation of a stop-signal occurring, these findings suggest that the striatum is involved in proactive inhibitory control over M1, most likely in interaction with SMC and rIFC

    Local Signal Time-Series during Rest Used for Areal Boundary Mapping in Individual Human Brains

    Get PDF
    It is widely thought that resting state functional connectivity likely reflects functional interaction among brain areas and that different functional areas interact with different sets of brain areas. A method for mapping areal boundaries has been formulated based on the large-scale spatial characteristics of regional interaction revealed by resting state functional connectivity. In the present study, we present a novel analysis for areal boundary mapping that requires only the signal timecourses within a region of interest, without reference to the information from outside the region. The areal boundaries were generated by the novel analysis and were compared with those generated by the previously-established standard analysis. The boundaries were robust and reproducible across the two analyses, in two regions of interest tested. These results suggest that the information for areal boundaries is readily available inside the region of interest

    Relapse to smoking during unaided cessation: Clinical, cognitive, and motivational predictors

    Get PDF
    Rationale: Neurobiological models of addiction suggest that abnormalities of brain reward circuitry distort salience attribution and inhibitory control processes, which in turn contribute to high relapse rates. Objectives: To determine whether impairments of salience attribution and inhibitory control predict relapse in a pharmacologically unaided attempt at smoking cessation. Methods: 141 smokers were assessed on indices of nicotine consumption / dependence (e.g. the FTND, cigarettes per day, salivary cotinine), and three trait impulsivity measures. After overnight abstinence they completed experimental tests of cue reactivity, attentional bias to smoking cues, response to financial reward, motor impulsiveness, and response inhibition (antisaccades). They then started a quit attempt with follow-up after 7 days, 1 month, and 3 months; abstinence was verified via salivary cotinine levels ≤ 20ng/ml. Results: Relapse rates at each point were 52.5%, 64% and 76.3%. The strongest predictor was pre-cessation salivary cotinine; other smoking / dependence indices did not explain additional outcome variance and neither did trait impulsivity. All experimental indices except responsivity to financial reward significantly predicted one week outcome. Salivary cotinine, attentional bias to smoking cues and antisaccade errors explained unique as well as shared variance. At one and three months, salivary cotinine, motor impulsiveness and cue reactivity were all individually predictive; the effects of salivary cotinine and motor impulsiveness were additive. Conclusions: These data provide some support for the involvement of abnormal cognitive and motivational processes in sustaining smoking dependence and suggest that they might be a focus of interventions, especially in the early stages of cessation. Dawkins L, Powell JH, Pickering AD, Powell JF, and West RJ (2009) Addiction 104, 850-
    corecore