575 research outputs found

    Utilization and turnover of labile dissolved organic matter by bacterial heterotrophs in eastern north Pacific surface waters

    Get PDF
    Seawater incubation experiments were conducted in June and October 1992 to examine bacterial utilization of labile dissolved organic matter (DOM) in open ocean surface waters of the eastern North Pacific. Natural plankton extract-DOM (PE-DOM) and selected model compounds were added to seawater samples to evaluate bacterial utilization and respiration rates relative to bacterial carbon production rates for the various amendments. PE-DOM always stimulated bacterial production and DOM utilization, and the primary nitrogen source supporting this bacterial production was dissolved organic nitrogen (DON). Utilization of DON during exponential growth was balanced by the production of ammonium for samples amended with PE-DOM. Bacterial growth efficiencies for samples amended with PE-DOM ranged between 3.4 and 8.8 % and generally were slightly higher in June than in October. Of the model compounds tested, net bacterial biomass production was observed only in samples amended with glucose, glucose plus ammonium (glucose+NH4+), and dissolved free amino acids (DFAA). Bacterial growth efficiencies for these amendments were 0.8, 1.9, and and 9.3.%, respectively. Bacterial production at in situ DOM concentrations was observed in June but not in October. Using the bacterial dissolved organic carbon (DOC) utilization rates observed in this study together with other detailed information pertaining to bulk DOC at our study site, we estimate that the turnover time for labile DOC in these surface waters ranges from approximately 2 to 6 d depending on the labiliity of the standing stock of DOC. On the basis of (a) the exclusive use of DON as a nitrogen source in PE-DOM amendments, (b) the stimulation of ammonium utilization in the glucose+NH4+ amendment, and (c) the higher growth efficiencies observed for samples amended with either PE-DOM or DFAA, we suggest that bacterioplankton biomass production in eastern North Pacific surface waters is primarily energy limited. As a result of this energy limitation, bacterial production appears to be additionally constrained by the quality of the nutrients available for assimilation. Thus, the quality of the DOM substrate, specifically the DOC:DON ratio, can be a major determinant of bacterial production in pelagic marine systems

    Radiocarbon in marine bacteria: Evidence for the ages of assimilated carbon

    Get PDF
    It is generally accepted that marine bacteria utilize labile, recently produced components of bulk dissolved organic matter. This interpretation is based largely on indirect measurements using model compounds and plankton-derived organic matter. Here, we present an assessment of the relative proportions of modem and older dissolved organic carbon (DOC) utilized by marine bacteria. Bacterial nucleic acids were collected from both estuarine (Santa Rosa Sound, FL) and open-ocean (eastern North Pacific) sites, and the natural radiocarbon signatures of the nucleic acid carbon in both systems were determined. Bacterial nucleic acids from Santa Rosa Sound were significantly enriched in radiocarbon with respect to the bulk DOC and were similar to the radiocarbon signature of atmospheric CO2 at the time of sampling, indicating that these bacteria exclusively assimilate a modem component of the estuarine bulk DOG. In contrast, bacterial nucleic acids from the oceanic site were enriched in C-14 relative to the bulk DOC but depleted in C-14 with respect to modem surface dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POCsusp). This suggests that open-ocean bacteria assimilate both modem and older components of DOG. The distinct radiocarbon signatures of the nucleic acids at these two sites (i.e., +120 +/- 17% estuarine vs. -34 +/- 24% oceanic) demonstrate that natural C-14 abundance measurements of bacterial biomarkers are a powerful tool for investigations of carbon cycling through microbial communities in different aquatic systems

    Tactile quality control with biomimetic active touch

    Get PDF

    Tactile manipulation with a TacThumb integrated on the Open-Hand M2 gripper

    Get PDF

    Exploiting Sensor Symmetry for Generalized Tactile Perception in Biomimetic Touch

    Get PDF

    Assessing sources and ages of organic matter supporting river and estuarine bacterial production: A multiple-isotope (D14C, d13C, and d15N) approach

    Get PDF
    We used radiocarbon (D14C) and stable isotopic (d13C, d15N) signatures of bacterial nucleic acids to estimate the sources and ages of organic matter (OM) assimilated by bacteria in the Hudson River and York River estuary. Dualisotope plots of D14C and d13C coupled with a three-source mixing model resolved the major OM sources supporting bacterial biomass production (BBP). However, overlap in the stable isotopic (d13C and d15N) values of potential source end members (i.e., terrestrial, freshwater phytoplankton, and marsh-derived) prohibited unequivocal source assignments for certain samples. In freshwater regions of the York, terrigenous material of relatively recent origin (i.e., decadal in age) accounted for the majority of OM assimilated by bacteria (49–83%). Marsh and freshwater planktonic material made up the other major source of OM, with 5–33% and 6–25% assimilated, respectively. In the mesohaline York, BBP was supported primarily by estuarine phytoplankton–derived OM during spring and summer (53–87%) and by marsh-derived OM during fall (as much as 83%). Isotopic signatures from higher salinity regions of the York suggested that BBP there was fueled predominantly by either estuarine phytoplankton-derived OM (July and November) or by material advected in from the Chesapeake Bay proper (October). In contrast to the York, BBP in the Hudson River estuary was subsidized by a greater portion (up to ;25%) of old (;24,000 yr BP) allochthonous OM, which was presumably derived from soils. These findings collectively suggest that bacterial metabolism and degradation in rivers and estuaries may profoundly alter the mean composition and age of OM during transport within these systems and before its export to the coastal ocean

    Tactile manipulation with biomimetic active touch

    Get PDF

    Estimates for the Sobolev trace constant with critical exponent and applications

    Full text link
    In this paper we find estimates for the optimal constant in the critical Sobolev trace inequality S\|u\|^p_{L^{p_*}(\partial\Omega) \hookrightarrow \|u\|^p_{W^{1,p}(\Omega)} that are independent of Ω\Omega. This estimates generalized those of [3] for general pp. Here p∗:=p(N−1)/(N−p)p_* := p(N-1)/(N-p) is the critical exponent for the immersion and NN is the space dimension. Then we apply our results first to prove existence of positive solutions to a nonlinear elliptic problem with a nonlinear boundary condition with critical growth on the boundary, generalizing the results of [16]. Finally, we study an optimal design problem with critical exponent.Comment: 22 pages, submitte
    • …
    corecore