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Tactile manipulation with biomimetic active touch

Luke Cramphorn, Student Member, IEEE, Benjamin Ward-Cherrier, Student Member, IEEE,
Nathan F. Lepora Member, IEEE

Abstract— Tactile manipulation is the ability to control ob-
jects in real-time using the sense of touch. Here we examine
tactile manipulation from the perspective of active touch with
a biomimetic tactile sensor, which combines tactile perception
with control of sensor location. Experiments are performed with
the tactile fingertip mounted as end effector to a robot arm,
to manipulate (roll) a cylinder in contact with the fingertip.
Performance is validated with offline (cross-validation) and
online (real-time operation) assessments. Location perception is
finer than the sensor resolution, leading to superresolved tactile
manipulation along a complex trajectory. However, the original
methods were non-robust to large unknown disturbances of
object location, necessitating modification of the perceptual pro-
cess to diminish prior beliefs relative to past posterior beliefs.
In consequence robust and accurate tactile manipulation was
attained. In general, it appears there is a trade-off between the
responsiveness to unknown change and manipulation accuracy,
which must be set appropriately for each task.

I. INTRODUCTION

Tactile manipulation — the ability to control objects in
real-time using the sense of touch — is both a key contributor
to the success of humans as a species and a capability
whose instantiation in artificial devices could revolutionize
industrial and service robotics. Applications range from
sorting, positioning and assembling parts in manufacturing to
assisting, lifting and interacting with humans in healthcare.

Here we study tactile manipulation with a biomimetic
fingertip using active touch. A principal aspect of tactile
perception, and arguably all natural perception, is that touch
is active: we do not just touch, we feel [1], [2]. That un-
derstanding of touch has motivated recent work on methods
integrating tactile sensor control and perception [3], [4] with
a variety of approaches such as dynamical systems, neural
networks and statistical inference [5]–[7]. Our aim here is
to apply recent progress on biomimetic active perception,
where action aids perception, to active manipulation, where
perception aids action.

Our approach for tactile manipulation is based on methods
for active touch that implement optimal decision making
while controlling sensor location [7], [8], which were shown
recently to attain superresolved spatial acuity [9], [10]. Past
work on active perception has controlled the tactile sensor
to move to a good location for perception, by using tactile
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Fig. 1. Experimental setup. A tactile fingertip (the TacTip) is mounted
as end-effector on an ABB robot arm. This is used to manipulate (roll) a
cylinder mounted on a fixed housing along the range indicated.

data to infer intermediate estimates of location. Here we use
the same approach for perception, but redefine the control
policy to move the tactile sensor along a target trajectory. In
consequence, the tactile sensor can control an object that it
is in contact with using only the sense of touch.

The effectiveness of tactile manipulation is here assessed
using a robot comprised of a biomimetic fingertip mounted
as end effector to a robot arm. This robot has previously been
applied to active perception of fixed objects, such as localiza-
tion of a hemicylinder [10]. Here we use a novel experiment
comprised of a cylinder that rolls within a fixed housing
under lateral movements of the tactile sensor (Fig. 1). We val-
idate performance with offline (cross-validation) and online
(real-time operation) assessments of controlling the cylinder
location. Subtleties were indicated under large unexpected
disturbances of the cylinder, which required modification of
how prior beliefs are defined for perceptual decision making.
Superresolved manipulation at sub-millimeter accuracy was
then robustly attained both offline and online. Although the
manipulation was validated with a simple task, we expect
the approach generalizes to more complex scenarios.

II. BACKGROUND AND RELATED WORK

Many different kinds of tactile sensors have been de-
veloped for manipulation purposes [11]. Tactile sensors
have been used for object recognition [12], improving
grasp stability with force control [13] and object explo-
ration/manipulation through edge or surface following [14].
Tactile servoing [15] has been applied to object manipulation



Fig. 2. Diagram of the TacTip (left) with pins shown on the inside surface of
a silicon membrane, which are LED illuminated and imaged by an internal
camera. The right diagram is a representation of the deformation of the
membrane as it impinges on a test object (a 40 mm dia. cylinder).

on an industrial robot arm [16] and particle filter methods for
controlling how to push objects using tactile feedback [17].
Bayesian methods have been proposed for in-hand manipu-
lation [18], [19]; here we examine tactile manipulation from
the perspective of biomimetic active perception.

Active perception combines a method for controlling a
sensor with interpretation of that data [1] (see also [3],
[4]). Recent work on active touch with biomimetic fingertips
has focussed on algorithms for sensor control and percep-
tion [5]. Contemporary statistical approaches to active touch
treat percepts as hypotheses. One example, termed Bayesian
exploration, selects tactile data that disambiguates a leading
percept from its alternatives [6]. Another approach, termed
active Bayesian perception, sets a control policy to guide
sensor location (‘where’) during optimal decision making
of object identity (‘what’) [7], [8], typically fixating the
sensor over the object. This latter method can result in
superresolved spatial perception [9], [10] and closely relates
to the approach used here, by having the control policy guide
active manipulation rather than active perception.

Active touch has been demonstrated on several biomimetic
fingertips having discrete tactile elements (taxels), includ-
ing capacitive sensors (e.g. iCub fingertip) [7]–[9], MEMS
sensors [5] and barometric sensors (e.g. biotac) [6]. Here
we use an optical tactile sensor called the TacTip (Tactile
fingerTip) developed at Bristol Robotics Laboratory [10],
[20]–[22]. The TacTip’s principal novelty as an optical tactile
sensor is that it has an array of pins molded inside the skin
that indicate deformations of the surface, with displacements
analogous to sensor readings from taxel-based devices.

III. METHODS

A. Details of the tactile sensor and data collection

1) The Tactile fingertip: The TacTip is an optical tactile
sensor developed at Bristol Robotics Laboratory [10], [20]–
[22] that has several highly useful properties (Fig. 2): (i)
the casing is 3D-printed and hence readily customizable
and inexpensive; (ii) it uses a standard CCD web-camera
(LifeCam Cinema HD, Microsoft) to collect data, which is
also inexpensive and connects to a PC via a USB interface;

Fig. 3. Left: typical image captured by the internal camera. Right: filtered
image with tracking over 18 pins (shown in red).

(iii) it has a molded silicon outer membrane that is robust to
wear and easily replaced if damaged; and (iv) between the
outer membrane and the electronics is a clear compliant gel
(RTV27906, Techsil UK) that both enables tactile sensing
through compression and protects the delicate parts of the
sensor.

The particular design of TacTip used here has a 40 mm
diameter hemispherical sensor pad with 18 pins arranged in
a regular array on its underside. Six LEDs are mounted on a
ring around the base of the pad to illuminate the pins, whose
tips have been coated with white paint to give good contrast
with the black silicon outer membrane (Fig. 2).

2) Data collection: The TacTip is mounted as an end-
effector on a six degree-of-freedom robot arm (IRB 120,
ABB Robotics). The arm can precisely and repeatedly posi-
tion the sensor (absolute repeatability 0.01 mm).

The present study focusses on the localization of a cylinder
rolled by lateral movements of the tactile sensor used as a
manipulator (Fig. 1). As the cylinder rolls its position on
the sensor surface changes, permitting localization through
touch. A custom roller was built to constrain movements of
the roller to one dimension: this consisted of a flat perspex
bottom plate that the cylinder rolls over, with two perspex
walls separated by 100 mm, the same length as the cylinder
(100 mm long, 40 mm dia., cut from plastic). The bottom
plate was covered with rubber to ensure the cylinder rolls
rather than slips as the fingertip moves laterally. Magnets
were mounted at the ends of the cylinder and one end of the
roller to give a home position for the cylinder.

Data were collected while the tactile sensor moved 80 mm
laterally over the test cylinder, comprising 800 increments
∆x = 0.1 mm. Over about 50 mm and 150 mm at the
start and end of the range the TacTip does not contact
the cylinder; in the central ∼600 mm portion the TacTip is
in continuous contact and each lateral movement rolls the
cylinder, changing its contact position on the sensor surface.
Each incremental move ∆x lasted 1 sec and resulted in a
time series of sensor readings (Nsamples = 15 per increment).
The data used later in this paper were collected twice to give
distinct training and test sets. This approach for validation
ensured that the results are based on sampling from an
independent data set to that used to train the classifier.



Fig. 4. Algorithm for tactile manipulation. Tactile data is used to
determine likelihoods for object location, which update location posteriors;
the estimated location from the maximal posterior feeds into the control
policy, and the probabilities are then realigned with the resulting move.

3) Data preprocessing: The TacTip collects tactile data
as images (resolution 640×480 pixels, sampled at 15 fps),
which are filtered to detect and track displacements of pins
molded to the underside of the outer membrane. Images were
captured and filtered using opencv (http://opencv.org/). The
data preprocessing differed from previous studies with this
tactile sensor to ensure good pin tracking performance when
the sensor is in continuous contact with a surface. Past work
has used punctual contacts and a Lucas-Kanade algorithm
to track pins from frame to frame [10]; however, that algo-
rithm suffers from drift over extended periods of tracking,
compromising its effectiveness for the present experiments.

Thus, to track the x- and y- coordinates of the pin centers,
the images were first captured, filtered and thresholded in
opencv (http://opencv.org/). The center of the pins were then
detected for each frame using contour detection and their x-
and y-cooordinates recorded. Each pin is identified based on
its proximity to a default set of pin positions recorded when
the TacTip is not in contact with the surface; if no pin is
detected within a radius of 4 mm from its default, then the
position from the previous frame is used instead. The two
dimensional sx and sy pin displacements sk(j) are treated
as distinct data dimensions, with 1 ≤ k ≤ Ndims = 18 and
1 ≤ j ≤ Nsamples = 15.

The TacTip was also modified to aid the effectiveness of
the pin tracking (Fig. 3), by having only 18 pins spaced
∼ 8 mm apart (compared with ∼500 pins in the original
design). Using less pins with greater separation prevented
the wrong pin from being identified when the sensor surface
deforms greatly; it also gave lower information transfer rates.

B. Algorithms for location perception and manipulation

We use a recursive Bayesian approach for tactile percep-
tion that been previously applied to passive [23] and active
touch [7]–[10]. Past work has focussed on making a percep-
tual decision, when the belief passes a threshold. The present
approach differs by applying the active perception methods
to continual tactile manipulation of an object (Fig. 4).

Formally, the algorithms apply to sequences of contact

data z1:t = {z1, · · · , zt} that are multi-dimensional time
series of sensor values,

zt = {sk(j) : 1 ≤ j ≤ Nsamples, 1 ≤ k ≤ Ndims}, (1)

with indices j, k labeling the time sample and data dimension
respectively. This contact data gives evidence for the present
location xl, 1 ≤ l ≤ Nloc with a range of distinct locations.
(Here Nloc = 800 locations spanning 80 mm are used.)

1) Measurement model and likelihood estimation: The
location likelihoods P (zt|xl) use a measurement model of
the training data for each location xl

logP (zt|xl) =

Ndims∑
k=1

Nsamples∑
j=1

logPk(sk(j)|xl)
NsamplesNdims

(2)

constructed by assuming all data dimensions k and samples
sk(j) within each contact are independent (so individual
log likelihoods sum). Here this sum is normalized by the
total number of data points NsamplesNdims to ensure that the
likelihoods do not scale with the sample number of a contact.

Following other work on robot tactile perception [23],
the probabilities Pk(sk(j)|xl) are found with a histogram
method applied to training data for each location xl. The
sensor values sk for data dimension k are binned into equal
intervals Ib, 1 ≤ b ≤ Nbins over their range (here with
Nbins = 100). The sampling distribution is given by the
normalized histogram counts nkl(b) for training class xl:

Pk(sk|xl) = Pk(b|xl) =
nkl(b) + ε∑Nbins

b=1 nkl(b)
, (3)

where nkl(b) is the sample count in bin b for dimension k
over all training data in class xl. Technically, the likelihood
is ill-defined if any histogram bin is empty, which is fixed
by regularizing the bin counts with a small constant (ε� 1).

2) Bayesian belief update: Bayes’ rule is used after each
successive test contact zt to recursively update the posterior
location beliefs P (xl|z1:t) for the perceptual classes with the
location likelihoods P (zt|xl) of that contact data

P (xl|z1:t) =
P (zt|xl)P (xl; t)

P (zt)
, (4)

from background information given by the prior location
beliefs P (xl; t) at time t. The marginal probabilities are

P (zt) =

Nloc∑
l=1

P (zt|xl)P (xl; t). (5)

A sequence of contacts z1, · · · , zt results in a sequence
of posterior beliefs P (xl|z1), · · · , P (xl|z1:t) initialized from
uniform priors P (xl|z0) = 1/Nloc.

Here we differ in an important way from past work
in specifying a relation between the prior location beliefs
P (xl; t) and previous posterior beliefs, rather than assuming
the two are identical. We assume a prior belief model that
the two are related by a (normalized) power law

P (xl; t) =
[P (xl|z1:t−1)]

α∑Nloc

l=1 [P (xl|z1:t−1)]
α
. (6)



Fig. 5. Tactile data for TacTip rolling the test cylinder (40 mm dia.). Discrete lateral movements of 0.1 mm spanned an 80 mm location range over 800
increments. Data is shown for the pin sx-displacements (panel A) and sy-displacements (panel B). Pins are colored according to location on the fingertip.

Fig. 6. Dependence of location error eloc(x) on location x. Location
classification uses maximum likelihood estimation. The dependence has
an underlying (noisy) U-shaped function with good perception across the
central range. (Results over 10000 Monte Carlo iterations.)

The parameter α represents the influence of past posteriors
on the prior: for α = 1 the priors equal the previous
posteriors P (xl; t) = P (xl|z1:t−1) and the method becomes
standard recursive Bayesian inference; for α = 0 the priors
are flat P (xl; t) = 1/Nloc so the posteriors equal the location
likelihoods P (xl; t) = P (zt|xl); and for 0 < α < 1, the prior
belief model interpolates between these two cases.

3) Location perception: Here we infer the location of the
object relative to the fingertip from the maximal posterior
belief P (xl|z1:t), with estimated location xest at time t of

xest(t) = arg max
xl

P (xl|z1:t). (7)

In the special case α = 0 of flat prior beliefs, the location
perception reduces to maximum likelihood estimation

xest(t) = arg max
xl

P (zt|xl), α = 0, (8)

with the perception made only from the present contact data
zt, disregarding the contact history.

4) Active manipulation: Here we use a control policy
x ← x + π to move the sensor and hence object based on
the present beliefs of relative object-fingertip location. We
consider a control policy that seeks to move the object along
a target trajectory xtraj(t) relative to the fingertip

x← x+ π(t), π(t) = xtraj(t)− xest(t), (9)

which for simplicity depends on the posteriors only through
the estimated location xest(t) (Eq. 7). In practise, the change
in position π(t) is translated into a discrete number of
location classes ∆l = π(t)/∆x, by a linear scaling because
move increments ∆x are assumed uniform. (We also restrict
moves to at most 10 mm to prevent large jumps in position.)

After a move of ∆l location classes, the location beliefs
P (xl|z1:t) should be kept aligned with the sensor by shifting
the class probabilities by the number of classes moved

P (xl|z1:t)← P (xl−∆l|z1:t) if 1 ≤ xl−∆l ≤ Nloc, (10)
else P (xl|z1:t)← P (x1|z1:t) or P (xNloc

|z1:t).

For simplicity, the (undetermined) probabilites shifted from
outside the location range are assumed uniform and given
by the existing probability at that extremity of the range
(probabilities can then be renormalized to have unit sum).

5) Offline and online validation: Offline validation pro-
vides an analysis of localization accuracy and algorithm
performance using cross-validation performed after data col-
lection. Two sets of data, termed training and testing, are
gathered for cross-validation. A Monte-Carlo method is then
used to randomly select data from the testing set for analysis
of localization accuracy based on likelihoods determined
from the training set. Localization accuracy is quantified
with the mean absolute error eloc(x) = 〈|x− xest|〉 over
all classified xest location values with true location class x.

Online validation adds a physical confirmation of the
method’s performance during real-time robot operation. For
online testing, the test data and robot are controlled in real-
time using a closed loop between data capture and control,
with localization based on likelihoods determined from the
same training set used for offline testing. Online validation is
applied to demonstrating tactile manipulation performance.

IV. RESULTS

A. Inspection of data

Data for the TacTip (Fig. 5) were collected while the
sensor gradually rolled the test object (cylinder, 40 mm
diameter) with a small (0.1 mm) lateral displacement to span
a 80 mm location range over 800 incremental displacements.
Contact features from the stimulus are encoded in the time-
series response of each pin (colored on Fig. 5).



Fig. 7. Tactile manipulation in a simulated environment drawn from
validation data. Performance for (A) recursive (α = 1) Bayesian inference;
and (B) maximum likelihood estimation (α = 0). Target trajectories (black)
are well tracked by the actual movements (green) and believed locations
(red), with slightly better performance for the Bayesian method.

The most obvious effect of laterally displacing the sensor
to roll the object was a change in the activation of tactile
elements, permitting classification of where the cylinder is
located relative to the TacTip. For example, in the pattern of
sx and sy displacements (Figs 5A,B), the left-most locations
activate the taxels plotted in blue on the left of the TacTip
(c.f. Fig. 5), changing as the TacTip moves rightwards to the
taxels plotted in red on the right.

B. Offline localization accuracy

The localization accuracy of the TacTip is first assessed
with an offline validation applied to single increments of data
at locations xl across the 80 mm range. Results are generated
with an offline Monte Carlo procedure, repeatedly drawing
from the test data (Sec. III-B.5) and determining location
based on maximum likelihood estimation (Eq. 8).

The location error eloc(x) varies strongly with test location
(Fig. 6). The largest errors are eloc(x)& 5 mm for glancing or
no contacts near the extremities (x<5 mm and x>65 mm)
of the range. The smallest location errors eloc(x) . 0.5 mm
are in the central region (roughly 5 mm≤ x ≤ 65 mm) when
the sensor is fully in contact with the test cylinder. These
results show that the roller can be accurately localized (to
sub-millimeter acuity) while the fingertip makes good contact
with the object.

Fig. 8. Tactile manipulation in real-time on the robot. Panels are as in
Fig. 7. With Bayesian inference, the target trajectories (black) are well
tracked (green) according to the believed locations (red), with poorer but
still approximate success for the maximum likelihood method.

C. Validation of tactile manipulation

Validation of tactile manipulation capability was imple-
mented by moving the cylinder along a target trajectory
using only tactile data to control sensory location. For all
experiments, we used a sinusoidal trajectory with linear
increasing amplitude xtraj(t) = 0.4t sin(2πt/20) with period
20 sec and amplitude 40 mm after 100 sec.

An initial offline testing of tactile manipulation capabil-
ity was implemented using the training and test data sets
to perform simulated manipulation of the cylinder. Data
was sampled from the test set during the manipulation
task according to the simulated location of the sensor. For
both recursive Bayesian (α = 1) and maximum likelihood
(α = 0) estimates of location, the simulated trajectory was
successfully followed (Fig. 7). The Bayesian case (Fig. 7A)
had near perfect accuracy, whereas the maximum likelihood
case (Fig. 7B) had sub-millimeter deviations from the target
trajectory, consistent with the offline estimate of localization
error (Fig. 5). The superiority of the Bayesian approach is
expected because evidence for location is integrated over the
entire data history z1:t, rather than just one increment zt.

For online testing, the tactile manipulation was success-
fully performed in real-time, following the target trajectory
similarly to offline validation but with less accuracy (Fig. 8).
The recursive Bayesian method (α = 1) had near perfect
accuracy with a couple of small deviations . 2 mm near
the beginning of the experiment (Fig. 8A); the maximum



Fig. 9. Tactile manipulation in an offline environment with disturbance.
Performance for (A) recursive (α = 1) Bayesian inference; (B) recursive
(α = 0.95) inference with diminished priors; and (C) maximum likelihood
estimation (α = 0). Only the methods with diminished priors and maximum
likelihood can correct the disturbance, at the expense of reduced accuracy.

likelihood method (α = 0) was more inaccurate with
deviations ∼ 5 mm over the entire trajectory (Fig. 8B).

The differences between offline and online testing are due
to sources of noise in real-time on the robot not present in the
pre-gathered test data. For example, move increments during
gathering data are always ∆x = 0.1 mm, whereas increments
during online testing can be up to ±10 mm; and there may be
other unknown differences between real-time operation and
offline validation. This illustrates the importance of online
validation for testing actual robot performance. The overall
conclusion is that the recursive Bayesian method (α = 1) is
superior to the maximum likelihood method (α = 0).

D. Tactile manipulation with a disturbance

To test the robustness of the tactile manipulation, the vali-
dation was repeated introducing an unknown disturbance into

Fig. 10. Tactile manipulation in real-time on the robot with disturbance.
Panels are as in Fig. 9. Only the methods with diminished priors and
maximum likelihood can correct the disturbance, at the expense of accuracy
deteriorating with lower α before the disturbance.

the system. Midway through the trial (50 sec), the cylinder
location was moved laterally by 20 mm. The effectiveness
of the tactile manipulation to correct for this unknown
movement by repositioning the cylinder back onto its target
trajectory was then examined.

For offline testing, the tactile manipulation responded in
different ways to the disturbance (Fig. 9) depending on the
parameter α from 1 down to 0 that represents a diminishing
influence of past posteriors on current priors. The overall
behavior was that the tactile manipulation responds more
quickly to the disturbance as the value of α is decreased.
At α = 1, the tactile manipulation completely ignores new
sensory data that the location of the cylinder has moved,
and consequently the trajectory after the disturbance is
offset from the target trajectory (Fig. 9A). At α = 0, the
tactile manipulation responds immediately to the change in
location of the cylinder and corrects onto the target trajectory



(Fig. 9C). For an intermediate value α < 0.95, the tactile
manipulation took ∼10 sec to realize the location had shifted,
then corrects onto the target trajectory (Fig. 9B).

For online testing, the tactile manipulation responded to
the disturbance similarly to the offline test (Fig. 10): for
α = 1, the trajectory after the disturbance was not corrected
(Fig. 10A), for α = 0.95, the trajectory after the disturbance
was corrected after a delay of ∼10 sec (Fig. 10B), and for
α = 0 the trajectory was corrected immediately (Fig. 10C).
These improvements in ability to respond to change as α
decreases from 1 to 0, representing a diminishing effect of
posteriors on priors, were accompanied by a deterioration
of the accuracy of the tactile manipulation in following the
trajectory, as observed in the previous section. There thus
appears to be a trade-off between the responsiveness to
unknown change and the manipulation accuracy when using
tactile information to control object location.

V. DISCUSSION

Biomimetic tactile manipulation based on active touch
gives accurate control of rolling a cylinder with an artificial
fingertip. Experiments were performed with a tactile fingertip
(the TacTip) mounted as end-effector on an ABB robot arm,
with which lateral movements could manipulate (roll) the
cylinder from side-to-side. Location perception was achieved
with decision making methods, giving sub-millimeter lo-
calization finer than the sensor resolution. In consequence,
the tactile manipulation was performed at superresolved
accuracy along a complex trajectory.

Subtleties were indicated under large (20 mm) distur-
bances of cylinder location during testing: the system has
no ability to anticipate the disturbance, but can react to the
sudden change in perceived object location. The capability
of the tactile system to react to a change in object location
was found to depend on the Bayesian update rule for the
location belief during perceptual decision making. If the prior
beliefs for estimating location are set equal to the posterior
beliefs for the previous estimate, the system was not able to
perceive sudden changes of location. This was because the
prior beliefs had become sufficiently peaked late in the trial
that new sensory evidence for location was ignored.

These problems with estimating object location could be
addressed with a maximum likelihood procedure applied to
just the present contact data (equivalently, the prior beliefs
are considered flat). However, this solution came at the cost
of reducing the accuracy of tactile manipulation. Therefore,
we proposed an intermediate solution in which the prior
beliefs are diminished by a power law relative to the posterior
beliefs, giving moderately accurate performance that can
respond to sudden changes in location. In general, there is
a trade-off between responsiveness to unknown change and
manipulation accuracy, to be set appropriately for the task.

We expect the trade-off between responsiveness to change
and accuracy is a general aspect of tactile manipulation.
The situation bears analogy with utilizing a Kalman filter
to combine information for accurate control, which is linked
with recent tactile manipulation methods based on classical

control theory [14] and particle filters [17]. Our expectation
is that understanding the relation between these approaches
and the biomimetic approach proposed here will help in
solving the overall problem of attaining robust and general
tactile manipulation in complex and uncertain environments
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