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Tactile manipulation with a TacThumb
integrated on the Open-Hand M2 gripper

Benjamin Ward-Cherrier, Student Member, IEEE, Luke Cramphorn, Nathan F. Lepora, Member, IEEE

Abstract—Tactile manipulation will be essential for automating
industrial and service tasks currently done by humans. However,
the application of tactile feedback to dexterous manipulation
remains a challenging unsolved problem, with robot capabilities
lagging far behind those of humans. Here we present the
TacThumb (Tactile Thumb): a cheap, robust, 3d-printed optical
tactile sensor integrated on the Yale GrabLab model M2 gripper.
To test tactile manipulation capabilities, a cylinder is rolled along
the TacThumb using the opposing non-tactile finger. The tactile
information permits localization of the test cylinder along the
TacThumb to sub-millimetre accuracy over most of the movement
range. In consequence, the M2 gripper can perform accurate in-
hand tactile manipulation, by providing information that can be
used to control the location of the test object within the hand.
Tactile manipulation is demonstrated by rolling cylinders with a
range of diameters up and down the TacThumb along a target
trajectory, using only tactile data to update its current position
and move it towards a target. This model-free approach gives
a demonstration of basic tactile manipulation without the need
for a kinematic model of the hand, in a manner that should
generalize to other tactile manipulation tasks.

Index Terms—Force and Tactile Sensing; Grippers and Other
End-Effectors; Dexterous Manipulation

I. INTRODUCTION

MANY different kinds of tactile sensors and robot hands
have been developed for manipulation purposes [1].

Tactile sensors have been used for object recognition [2],
improving grasp stability with force control [3] and/or slip
detection [4], and object exploration through edge or surface
following [5]. Tactile servoing [6] has also been applied to a
form of object manipulation on an industrial robot arm [7].
However, the application of tactile feedback to dexterous
manipulation (for example, moving an object to different
positions within a robot hand) still remains a challenging and
largely unsolved problem, with robot capabilities lagging far
behind those of humans.

The aim of this study is to present the development of
a 3d printed tactile sensor and its integration into an open-
source 3d printed robot hand, as an inexpensive, customizable
platform for investigating dexterous tactile manipulation. Our
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Fig. 1: TacThumb mounted on the Open-Hand M2 gripper.

TacThumb (Tactile Thumb) is a 3d-printed optical tactile
sensor adapted from the TacTip [8] designed for mounting
(Fig. 1) on the Model M2 Gripper [9], an open-source, 3d-
printed robotic gripper from the Yale Open-Hand project [10].
The M2 Gripper allows a one-dimensional rolling motion
along the TacThumb, which is ideal as a basic first venture
into tactile manipulation.

A key design aspect of the TacThumb is that it uses an
internal webcam to image deformations of a flexible contact
pad. Recent work has shown that this design is capable of
sub-millimetre accuracy in tactile perception, since it is well
suited for tactile superresolution methods [11], [12] based on
a Bayesian approach for active touch [13]–[15]. Therefore,
we use this active touch approach here to accurately move
a grasped object along a desired trajectory within the robot
hand, while maintaining a stable grasp.

To test tactile manipulation capabilities, a cylinder is rolled
along the TacThumb using the opposing non-tactile finger.
Tactile feedback permits localization of the test cylinder along
the TacThumb to sub-millimeter accuracy over its entire
20 mm movement range. In consequence, the M2 gripper can
perform accurate in-hand tactile manipulation, by providing
tactile feedback to control the location of the test object within
the hand. Tactile manipulation is demonstrated by rolling the
cylinder up and down the TacThumb along a target trajectory,
using only tactile data to update its current position and
move it towards a target. This approach is model-free. It thus
demonstrates basic tactile manipulation without the need for a
complex kinematic model of the hand, in a manner that should
generalize to other tactile manipulation tasks.
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Fig. 2: Design of the TacThumb. The pins on the inside of the
base’s rubber membrane are illuminated by the LED circuit.
These pins are displaced during object contact, and are tracked
by a Microsoft Cinema HD webcam mounted on the lid.

II. BACKGROUND AND RELATED WORK

Tactile sensing is an essential ingredient in human-robot
interaction and fine manipulation [16]. As such, a variety of
different tactile sensor designs have been developed for use
on robot hands (see [1], [17] for reviews).

Tactile sensors [18] and tactile skins [19], [20] have been
applied primarily to slip detection and grasp improvement
[21]. Others can be used as force/torque detectors [22], as
well as providing tactile perception, for instance to detect an
object’s geometrical shape. One approach for tactile perception
is to require a model of the sensor in order to compute accurate
force vectors and locate contact points, referred to as a model-
based solution [5], [18], [19], [21], [22]. We focus on a model-
free approach, which relies on a training phase but requires
no knowledge of the sensor itself.

Here we aim to develop a tactile sensor for model-free
dexterous manipulation and integrate it in a robot hand. We
name the sensor TacThumb, as its design is based on the
TacTip (Tactile fingerTip), a 3d-printed optical tactile sensor
developed at Bristol robotics laboratory [8], [12], [23]. The
TacTip’s compliance is an attractive aspect for integration into
robot hands, as it is known to improve grasping [24]. Work
has previously been done on miniaturising the TacTip for
integration into an elumotion ELU-2 robot hand [23]. The
current paper takes a different approach by modelling the
sensor on the existing M2 gripper [9] thumb and 3d-printing
the TacThumb in one piece using multimaterial 3d-printing.

Although many different robot hands exist [25], the Yale
Open-Hand designs stand out with their simplicity, low cost
and performance in gripping tasks [10]. The hand used here is
the Model M2 gripper [9], a 3d-printed, 2-fingered fully actu-
ated robot gripper with a fixed thumb and opposing movable
finger. Our TacThumb sensor design naturally integrates with
the M2 Gripper (replacing the fixed thumb) since it is also 3d-
printed, inexpensive and robust. Using an optical sensor also
avoids possible issues related to excessive wiring [1].

Tactile sensor arrays (Takktile [26]) of MEMS barometers

Fig. 3: Experimental setup. Data is captured from the Tac-
Thumb in python OpenCV (http://opencv.org) and sent to
Matlab for analysis. The hand’s movements are controlled
through python.

have been previously integrated into the Yale i-HY Open-Hand
[27], but not used to control the hand. Object recognition
has been demonstrated with the TakkTile sensors integrated
into the Yale model T42 Open-Hand in combination with
motor information [28], with emphasis that open-loop passive
perception was sufficient with limited tactile information (two
of the five tactile array elements).

Our focus here is on closed-loop tactile control of an Open-
Hand gripper. Our control algorithm is based on a probabilistic
method for active tactile perception [12], [13], [15]. This
approach has been successfully applied to relocate the sensor
relative to the object for improved perception, resulting in
superresolved object localization [11], [12], [14]. Here we
apply it to in-hand tactile manipulation, using the robot hand
to reposition the object along the sensor.

III. METHODS
A. Hardware

The TacThumb is designed to fit on the Open-Hand M2
Gripper [9], a 3d-printed, 2-fingered open-source robot hand.
The M2 gripper’s 2 fingers are a fixed thumb (replaced by the
TacThumb) and an opposing moving finger with 2 pivot joints
controlled by an agonist/antagonist tendon pair [29].

1) TacThumb Fabrication and Functionality: The overall
design and functionality of the TacThumb is based on the
TacTip, a cheap, robust optical sensor developed at Bristol
Robotics Laboratory [8]. As such, it is made up of 4 main
parts (Fig. 2):

• The base: This is the part which comes into contact with
objects. It is made of a hemispherical silicon rubber pad
with small (∼ 1mm dia.) white pins on its inside surface,
separated from each other by 4 mm. The pad is filled
with RTV27906 silicon gel which gives the TacThumb
its compliance.

• The lens: A 1 mm thick acrylic lens separates the base
from fragile electronic components.

• The LED circuit: A circuit of 12 surface mounted LEDs
illuminate the pins on the pad’s inside surface.

• The lid: This part allows a camera to be mounted, which
tracks the movement of the pins as the sensor is brought
into contact with objects.
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Fig. 4: Images recorded by the TacThumb. The top panel
shows the image captured by the webcam. The bottom panel
shows the image after pre-processing - red dots represent the
pin centers identified by the pin detection algorithm.

The main innovation in the fabrication of the tactile thumb
is in the finger pad which is made completely through multi-
material 3d-printing. The rigid plastic base and rubber pad
are thus printed together in one piece, avoiding the need to
cast or secure the rubber pad. The pad’s inside surface has
pins in a regular rectangular layout. At the tip of each pin
a small amount of white plastic is 3d-printed. This shortens
and simplifies fabrication, by eliminating the need to paint
the pins (as in the TacTip sensor [8]). The hemispherical
design of the pad is chosen both for stress distribution, and
to maximize pin displacements across the TacThumb, thus
improving tactile perception. The lens is laser cut from 1 mm
acrylic and superglued to the base. 2 holes are cut in the lens,
through which the pad is filled with RTV27906 silicon gel.
The holes are then sealed with 3d-printed rubber plugs.

The lid is also 3d-printed in ABS plastic, and designed
specifically for mounting the Microsoft Lifecam Cinema HD
webcam. The webcam is disassembled and its circuit boards
rearranged to be more compact and a lens is added to improve
field of view. The modular nature of the TacThumb’s design
means this lid can be redesigned to mount a smaller or
higher framerate webcam for future versions of the sensor.
The Microsoft Cinema HD webcam is chosen for its low cost,
relatively good quality and ease of use (plug and play).

The TacThumb design emphasises straightforward manu-
facture and assembly, and keeps the manufacturing process
simple by 3d-printing the rubber as well as rigid plastic parts,
eliminating the need for casting, securing and painting the
rubber parts. As with the TacTip, the TacThumb is also low
cost, stable, easy to assemble, and robust (its electronic parts
are clearly separated from the contact area).

2) M2 Gripper mount: Basic manipulation is demonstrated
by mounting the finger on the Yale Open-Hand Model M2
Gripper [9] (Fig. 1). The M2 Gripper has a fixed thumb
(replaced with our TacThumb), and an opposing finger con-
trolled by an agonist and antagonist tendon pair. Each tendon
is connected to a separate Dynamixel MX-28AT servo. Al-
though underactuated fingers on other versions of the Open-
Hand demonstrate good gripping performance [10], the fully
actuated finger on the M2 Gripper allows for finer control, with

Fig. 5: Position range of the M2 gripper during data gathering.
The left panel shows the starting position, the right panel
shows the end position.

Fig. 6: Distribution of location classes along the range of
motion for all 3 objects considered (20 mm, 25 mm and 30 mm
dia. cylinders). The distributions being approximately linear,
we will consider an equal spacing of 0.5 mm between each
location class.

objects being rolled up and down the fixed thumb. The tip of
the moving finger is replaced with a more compliant round
tip (also made of a silicon membrane filled with RTV27906
silicon gel) to improve grip during rolling.

B. Data collection and processing

1) Data collection: The M2 Gripper is designed such that
to roll objects down (towards the palm), constant tension is
applied in the agonist tendon and gradually released in the
antagonist, thus bending the finger. Whereas to roll up (away
from the palm), tension is applied to the antagonist, and slowly
released in the agonist to straighten the finger. The design of
the M2 gripper is such that only a restricted range of motion
along the TacThumb is possible for the objects considered
(≈ 20mm). Although this range is narrow compared to the
100 mm length of the TacThumb, it is sufficient for demon-
strating tactile perception and manipulation performance.

Python scripts written by the GrabLab team
(https://github.com/grablab/openhand-software) are used
to control the individual dynamixel motors of the M2 gripper.
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Fig. 7: Training data for the 25 mm diameter cylinder rolling along the TacThumb over a 20mm range. 15 frames were
recorded at each of the 40 incremental positions. Panel A shows pin displacements along the TacThumb, and panel B shows
displacements across the TacThumb. Pins are coloured according to their position on the TacThumb, as illustrated on the
right-most panel.

Each motor has a pre-assigned position range (normalised
from 0 to 1).

The position of the motors is saved as a starting location
after gripping the object, and subsequent movements are
calculated from that position, to allow for objects of different
sizes to be grasped and manipulated.

Motors are calibrated to roll objects up and down, such that
a step downward roll corresponds to releasing the antagonist
motor by 0.05 on the normalised scale and tightening the
agonist by 0.025 (vice-versa for an upwards roll).

This calibration results in a nearly linear motion of rolling
a gripped object along the TacThumb, such that 40 increments
move the object over a 20 mm range (Fig. 5) in approximately
equal steps of 0.5 mm. This calibration is independently val-
idated by measuring the motion of the rolled object with an
optical tracking method that localizes the position of the object
along the TacThumb (Fig. 6).

Note that changes to the calibration described cannot affect
the performance of the sensor, and hence neither do they affect
the tactile manipulation; however choosing this calibration
enables us to obtain relatively regular hand movements, as well
as providing a means of validation of the sensor’s performance.

a) Training: During the training phase, a cylinder of
25 mm diameter (and subsequently 20 and 30 mm dia.) is
gripped and rolled down the TacThumb (Fig. 5) according
to the motor calibration described above, covering a range of
20 mm in 40 increments (Fig. 6).

b) Testing: We distinguish 2 forms of testing. Offline
testing provides an analysis of localization accuracy and algo-
rithm performance using cross-validation post data collection.
Online testing adds a physical confirmation of the method’s
performance during robot operation.

For offline testing of manipulation performance, validation
is attained using the training and test data sets used for
offline characterization of passive perception performance (this
data is collected while using the finger to move the object
systematically over the entire range). Data is then sampled
from the test set during the simulated manipulation task and
the object’s position shifted according to a target trajectory in
the virtual environment (stepped movements from a center).

For online testing, the test data and hand are controlled in

real-time using a closed loop between data capture (python,
openCV), analysis (MATLAB) and the control algorithms
(python) for the robot hand (Fig. 3). The same training set
is used as for offline testing.

We have included a supplementary MPEG format video
clip (40.9 MB in size), available at http://ieeexplore.ieee.org,
which shows the training and online testing experiments being
performed.

2) Data pre-processing: In both the validation and manipu-
lation experiments, the sensor’s webcam records images of the
pins on the inside of the finger pad (Fig. 4) at approximately
20 fps. To track the x- and y-coordinates of the pin centers,
these images are captured, filtered and thresholded in opencv
(http://opencv.org/). The center of the pins are then detected
for each frame using contour detection (Fig. 4), and their x-
and y-cooordinates recorded. Each pin is identified based on
its proximity to a default common set of pin positions; if no
pin is detected within a radius of 2 mm from its default, then
the position from the previous frame is used.

3) Passive location perception: To passively localize an
object along the TacThumb, probabilistic methods for local-
ization are implemented that have been previously applied to
spatial superresolution with the TacTip [14]. We summarize
briefly the main steps here, referring to refs [12], [14], [15]
for the full technical details; the relation to biomimetic tactile
perception is discussed in refs [30]. A training data set is
collected with each of 40 move increments treated as a distinct
location class, with the tactile data at that location used
to construct a likelihood model of the location along the
TacThumb (using a histogram method). Given test data of
unknown locations, this model can be used to determine the
likelihood of which location class it originates from.

For offline testing of location perception along the Tac-
Thumb, a distinct test set is taken from the hand for per-
formance validation, and a Monte-Carlo procedure used to
randomly sample testing data from single moves to classify lo-
cation (1000 iterations per location class). A location decision
error at each location y is then given by the mean absolute
error eloc(y) = 〈|y − ydec|〉 with the ensemble average 〈·〉
evaluated over all test runs with the same true location class.
This decision corresponds to using just one increment of test
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Fig. 8: Localization error eloc dependency on location y along
the TacThumb. Errors are averaged over 10 sets of testing data
gathered offline from the robot hand.

data (equivalently the decision threshold has probability zero,
in the terminology of [12], [14]).

4) Active manipulation: To actively manipulate an object,
a simple control algorithm is implemented to extend the
passive location perception [12], [14] to active control of
object location. A desired location class along the TacThumb
is set, and after estimating the object’s location (Sec. III-B3)
a command is sent to the hand to move to that location. By
updating the target location over time, target trajectories can
be defined, and the hand attempts to follow them based solely
on tactile feedback.

During the manipulation, the location probabilities are up-
dated after each move using Bayes rule [12], [14], [15], with
the probabilities from the previous move treated as priors that
are combined with the likelihood from the present move. In
addition, the location classes of these priors are shifted by
the move to remain aligned with the sensor (in an egocentric
frame of reference). The posterior location probabilities are
then used to estimate the most probable location class for use
in repositioning the object during manipulation.

For offline testing, validation of the manipulation perfor-
mance is attained using the training and test data sets also
used for offline characterization of the passive perception as
a virtual environment. Data is then sampled from the test
set during the simulated manipulation task and the object’s
position shifted according to a target trajectory in the virtual
environment (stepped movements around a central fixation).

For online testing, the manipulation task is performed on
the hand in real-time, implementing a closed-loop between
data capture, analysis and control. We use the same training
set as for the offline testing and the same target trajectory for
manipulation, rolling the cylinder along the TacThumb based
only on tactile data.

IV. RESULTS

A. Inspection of data

Training data are collected from the hand by rolling a 25 mm
diameter cylinder down the TacThumb in 40 increments over
a range of approximately 20 mm (∼ 0.5mm between each
position). The range of cylinder movement is reported as

Fig. 9: Offline tracking. The target trajectory consists of a
sequence of pre-set target locations. In the offline version, the
actual trajectory corresponds to a shift along location classes
in the test set.

Fig. 10: Online tracking. The target trajectory consists of
a sequence of pre-set target locations. The actual trajectory
represents the movements of the M2 gripper, as it attempts to
replicate the target trajectory based on tactile data.

0-20 mm, with 0 mm corresponding to the cylinder’s initial
position within the hand (15 mm from the tip of the TacThumb;
Fig. 5). At each location, the webcam records 15 frames,
and the x and y-coordinates of each of the 26 pins are
extracted from each frame. Multiple (15) frames are recorded
at each location to reduce noise arising from the pin detection
algorithm or small movements of the hand.

Figure 7 shows the data gathered during one such training
run, with displacements in the x-direction (across the thumb)
in panel A and in the y-direction (along the thumb) in panel B.
The pins displayed on the right-hand side diagram of the
sensor use the same colour-code so as to be identifiable. The
step changes of pin displacements observed in both panels
indicate a move to the next location. Panel B also clearly
displays the rows of pins (displayed in a similar colour)
moving in unison in the y-direction, giving complementary
information about the location of the object.

B. Validation - Passive perception of cylinder

The TacThumb’s performance on localization is first tested
using a probabilistic approach for tactile perception. We call
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Fig. 11: Online tracking of multiple objects (20 mm, 25m mm and 30 mm diameter cylinders). Target trajectories are pre-set
locations. The actual trajectory shows the movements of the robotic finger during manipulation.

this step offline validation as it involves Monte Carlo sampling
over a recorded training and test set (Sec. III-B3).

The average localization errors are displayed for each loca-
tion along the TacThumb in Fig. 8. From this figure, it is clear
that localization accuracy is variable along the TacThumb. The
best performance is away from the tip of the thumb (at 5-
20 mm movement range; 20-35 mm from the TacThumb tip),
with errors averaging eloc ≈ 0.1 mm. Towards the tip of the
thumb (0-5 mm range; 15-20 mm from tip), fewer of the pins
are being displaced, and thus the localization error is higher,
reaching its poorest accuracy eloc = 0.6 mm.

Considering the taxel spacing of 4 mm, these results indicate
that the TacThumb mounted on the M2 Gripper is capable of
∼ 40-fold superresolved acuity along most of the range con-
sidered here (5-20 mm). (Note that the resolution of the sensor
is the spacing between pins on the TacThumb membrane,
since each pin functions analogously to single elements in
taxel-based devices [11], [12], [14].) This disparity in sensing
accuracy along the TacThumb is one of the reasons one might
want to manipulate objects, in order to obtain better tactile
feedback from them. The next section presents an experiment
in which the localization along the TacThumb is applied to a
tactile manipulation task.

C. Manipulation

A simple control algorithm is implemented for tactile
manipulation, which extends passive perception into active
control of object location [13] (Sec. III-B4).

An initial offline testing of manipulation capability is im-
plemented using the training and test data sets as a virtual
environment for performing simulated manipulation of the
cylinder. Data is sampled from the test set during the simulated
manipulation task to have the hand move the object along
a target trajectory, with offline hand movements calculated
accordingly. We use a stepped trajectory where the hand first
attempts to move the cylinder to the center of the location
range (10 mm), then displaces it 5 mm towards the base of the
hand, back to the center point, 5 mm towards the TacThumb
tip, back to the center, 5 mm towards the base, and finally back
to the center point again.

For offline testing, the target trajectory is successfully
followed within the simulated environment using only tactile
information (Fig. 9). The tracking is apparently perfect (0 mm
deviation), which is consistent with the localization errors

determined from passive perception along that region (5-
15 mm) of the TacThumb.

For online testing, the manipulation task is performed on
the hand in real-time using the same training set as for the
offline testing and the same target trajectory for manipulation
(Fig. 10). The hand initially manipulates the cylinder accord-
ing to the target trajectory, finding the centre point and then
displacing the object towards the base and back again.

As can be seen by comparing Figs. 9 and 10, online
tracking is not as accurate as in the offline simulation; that
being said, online performance is still highly accurate with
errors typically below 1 mm. This difference illustrates the im-
portance of going beyond simulation to physical embodiment
to fully test an approach.

D. Manipulation of multiple objects

The manipulation experiment described in the previous
section is repeated with 2 more distinct cylinders (dia. 20 mm
and 30 mm) in order to verify the performance of the Tac-
Thumb with a range of objects. Results for the online tracking
of all three cylinders are displayed in Fig. 11. Tracking is
successfully performed at an accuracy of ∼ 1 mm across the
20 mm range for all 3 cylinders.

As explained above, our model-free approach allows us to
gather tactile data without a precise knowledge of the sensor or
hand kinematics. Hence, here we have shown that the approach
is also object-independent, since tracking is successful for all
3 cylinders.

V. DISCUSSION

In this study, we designed a TacThumb sensor that can
be fully and easily integrated in the Open-Hand model M2
gripper. We also demonstrated this sensor is capable of su-
perresolved perception in a large portion of the gripper’s
position range. Basic manipulation was then demonstrated by
rolling the cylinder up and down the TacThumb along a target
trajectory, using a model-free approach which considered only
tactile feedback, without a precise knowledge of the M2
gripper’s kinematics.

Contact detection and accurate localization are known to be
essential for manipulation in robot hands [25]. This is a key
design feature of the TacThumb, as illustrated by the 40-fold
superresolved acuity found in its central region. The nature
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of the TacThumbs sensing mechanism through pin deflection
could also lend itself to detecting other important contact
information like force as well as simultaneously identifying
the objects being manipulated, as has been found useful in
other studies [5], [28]. Specifically, the Bayesian approach to
active manipulation (Sec. IIIB) could be trained on contact
data over normal or shear force, so that then force could be
controlled by the gripper to manipulate the object.

In-hand tactile manipulation was successfully demonstrated
with 3 distinct objects to sub-millimeter accuracy along de-
sired trajectories. This was less accurate than offline simulated
tactile manipulation with pre-recorded test data (which had
perfect accuracy), but still highly accurate with errors typically
below 1 mm. This illustrates that issues can arise with physical
embodiment that do not appear during simulations.

The TacThumb’s design provides many advantages: it is
cheap, robust, easily fabricated, while maintaining a relatively
high accuracy (∼ 0.5mm) over most of its surface, and having
the potential to gather information related to forces and object
shape. Because the sensor is 3d-printed, design improvements
can be readily implemented and assessed. In future work, we
will consider use of a smaller camera to further reduce the
form factor of the TacThumb sensor, and also modify the
opposing finger of the hand to have tactile sensing.

VI. CONCLUSION

Tactile manipulation was demonstrated with a new tactile
sensor, the TacThumb, integrated into the M2 gripper robot
hand. Manipulation was guided in a model-free way, with-
out the need for a complex kinematic model of the hand.
Superresolved manipulation performance was attained over
multiple objects, with objects following in-hand trajectories to
sub-millimetre accuracy. The combination of the TacThumb
with the 3d printed Yale M2 gripper offers an inexpensive,
customizable platform for investigating robust and accurate
tactile manipulation. As such, this tactile gripper is an ideal
device for investigating a variety of tactile manipulation tasks.

Acknowledgements: We thank Benjamin Winstone, Gareth
Griffiths, Tareq Assaf and Tony Pipe for help with the original
TacTip sensor.
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