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Addition of a Biomimetic Fingerprint on an Artificial
Fingertip Enhances Tactile Spatial Acuity

Luke Cramphorn, Benjamin Ward-Cherrier, and Nathan F. Lepora

Abstract—The fingerprint is a morphological aspect of the
human fingertip that has interesting implications for our sense of
touch. Previous studies focused on how the fingerprint affects the
perception of stimuli that excite high temporal frequencies, such
as for texture perception. These studies also only add papillary
ridges to their sensors. Here, we endow a biomimetic sensor with
both papillary ridges (fingerprint) and a dermal stiffness contrast
(stiffer intermediate ridges), and assess the impact on localization
perception accuracy. The sensor is based on a novel modular ver-
sion of a three-dimensional printed tactile sensor (TacTip). Tactile
data were collected with these tips on nine stimuli with varying
curvature. The location perception acuity of three tips [smooth,
fingerprint, and fingerprint (cores)] were compared with a prob-
abilistic classification method, finding that both fingerprinted tips
increase the perceptual acuity of small spatial scales. Interestingly,
the fingerprint variant had poorer accuracy than the smooth tip for
larger spatial scales; however, adding cores to enhance the dermal
stiffness counteracted the degradation of accuracy. This supports
the theories that the fingerprint aids the classification of edges
and smaller spatial scales, and demonstrates that the addition of a
fingerprint to an artificial tactile sensors improves its acuity.

Index Terms—Force and tactile sensing, siomimetics.

I. INTRODUCTION

THE human fingertip is an extremely complex and effi-
cient sensing device that provides us with the key in-

formation for manipulating objects and tools. It has evolved
multiple morphological aspects that aid its perceptive perfor-
mance. One of these aspects that is particularly interesting is
the fingerprint. The fingerprint has multiple aspects that can be
linked to the sense of touch, including but not limited to an
intricate interaction between the two layers of skin and concen-
trations of sensory cells located under the ridges that make up the
fingerprint. Utilising these features in biomimetic systems may
make it possible to enhance the functionality and performance
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Fig. 1. Biomimetic fingertip (TacTip) with a tip endowed with an artificial
fingerprint. This sensor is used in this experiment, with variations in tip design,
to demonstrate the improvements in location perception acuity on smaller spatial
scales due to a fingerprint.

of existing tactile sensors, which will in turn improve the abil-
ities of systems to perform more complex tactile tasks such as
in-hand manipulation where shape detection and object recon-
nection are crucial [1].

In this letter, we explore the effects of a novel combination
of a simple papillary ridge structure and an enhanced stiffness
contrast on biomimetic intermediate ridges upon the accuracy
of location perception on stimuli with varied curvature. Thus
we aim to identify if a fingerprint is beneficial feature for a
tactile sensor in spatial perception tasks. The use of fingerprints
on tactile sensors is not a new idea and research into the ef-
fect of fingerprints has shown some interesting tactile enhance-
ments. Multiple studies support the finding that textural per-
ception and classification (temporal features of tactile contact)
are improved by the presence of a fingerprint [2]–[4]. Artificial
papillary ridges have been used to enhance the local shape clas-
sification of stimuli [5] to show that the inclusion of these ridges
may enhance the detection of curvature. Also FEM studies [6],
[7] on the effect of intermediate ridges in the human fingertip
have pointed towards a lensing affect that focuses the stress of
a contact to allow finer detection and localisation of edges.

There is limited coverage, in literature, on the effect of an
artificial fingerprint for localization perception on small spa-
tial scales. Also, endowing a biomimetic fingertip with both

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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epidermal and dermal enhancements based on the human fin-
gertip is completely unexplored. To examine this, we use multi-
material printing methods to produce three tips for a modified
TacTip optical tactile sensor [8] (Fig. 1). These tips are the same
in volume, diameter, and pin layout but differ in their morphol-
ogy. Firstly, there are papillary ridges made from nodules on
the exterior skin that mirror the pin layout on the interior, in the
same way that papillary ridges mirror the intermediate ridges in
the human fingertip. Secondly, there is an increase in the con-
trast of stiffness between the skin (epidermis) and flesh (dermis).
The latter is achieved by adding a solid core that runs through
the pin body to the pin tip. We expect to see improvements in
the localisation accuracy of the tips on smaller spatial scales by
including the artificial papillary ridges, as well as a further im-
provement at these scales due to the inclusion of the enhanced
dermal stiffness contrast.

The acuity of location perception of these tips is calculated
from an off-line probabilistic classifier and compared for 9 stim-
uli of varying curvature. We show that the addition of papillary
ridges improves the sensor sensitivity (lower ambiguity between
sensory readings) which in turn improves accuracy of our tac-
tile sensor to localisation tasks on features that are smaller spa-
tially (lower curvature). Interestingly the enhancement of der-
mal stiffness contrast does not further improve the detection
at these ranges as expected. Although the enhanced stiffness
does appear to negate negative effects due to the presence of
fingerprint on larger spatial scales, possibly due to supporting
the structure of the pins creating a more consistent deforma-
tion. Hence we demonstrate that the inclusion of the papillary
ridges and stiff intermediate ridges of the human fingertip in
a biomimetic fingertip improves the sensor’s locational percep-
tion acuity to smaller spatial scales without impairing sensing on
larger scales.

II. BACKGROUND AND RELATED WORK

The fingerprint is believed to have a purpose in tactile sensing.
It is made up of parallel whorls of ridges on the outer layer of skin
(epidermis) known as papillary ridges. The epidermis protrudes
into the dermis (a deeper layer of skin) creating a junction of
interlocking sections of tissue [9], [10]. This interlock creates
ridges of epidermal tissue known as intermediate ridges, that
mirror the papillary ridges. Limiting ridges follow the grooves
between the papillary ridges and act to limit movement between
the two layers. The tips of the intermediate ridges have a cluster
of 5–10 mechanoreceptors known as Merkel cells, that adapt
slowly (SA) throughout contact with stimuli [10], [11]. This is
known as the Merkel cell complex (MCC). This structure pro-
duces a sophisticated interaction between stimulus and sensor
(Fig. 2).

There have been many theories on the function of the human
fingerprint, many of which may not be mutually exclusive; thus,
the fingerprint would appear to aid the human sense of touch in
many ways. One hypothesis is that the fingerprint assists grasp-
ing by acting as a high friction surface between the fingertip and
the contacted object [12], or as an aid for slip detection [13]. An-
other suggestion presented in The Anatomical Record in 1954

Fig. 2. Structure of the fingerprint. The top layer of the skin is the epidermis,
which has protrusions on the surface called papillary ridges (fingerprint). These
ridges overlay epidermal protrusions into the dermis (inner layer of skin) called
intermediate ridges. At the tip of these ridges are touch receptor cells (Merkel
cells). The right image depicts the biomimetic principles of our sensor, with an
epidermis and dermis, as well as papillary ridges and intermediate ridges.

by Cauna [9] suggests that the fingerprint aids tactile percep-
tion by allowing the intermediate ridges to follow the motion
of the papillary ridges acting as a small mechanical lever which
magnifies the response to tactile contact. Although recent publi-
cations by Gerling and Thomas, 2005 [6] and Gerling, 2010 [7]
have shown that the ‘mechanical lever explanation’ may not be
adequate, by producing FEM models of a human fingertip that
explore the effect of intermediate ridges on the transference of
stresses from a contact to the sensory cells. Their findings have
shown that the intermediate ridges focus the stress of contact
and increase the signal over background noise to allow finer
edge detection. It is important to note that this model focuses on
the intermediate ridges and does not include papillary ridges. It
was also found that the stress distribution through the tip is not
altered by the ridges and thus does not aid classification between
the edge and gap probes that they explored.

Many tactile sensors have been developed and each has
properties motivated by convenience of fabrication, durability,
biomimesis and intended use [10], [14], [15]. Some applica-
tions of tactile sensors include object identification, control,
and manipulation (combination of identification and control). A
desirable property of tactile sensors is that they are soft and com-
pliant, for example to allow the sensor to conform to the stim-
ulus as well as to exhibit hyper-acuity/superressolution proper-
ties. A sensor with superresolution utilises the compliance of
the surface to spread the contact over multiple nodes (taxels,
pins, or mechanoreceptors) thus enabling a triangulation to con-
tact localisation on a scale smaller than the resolution of the
sensor [16].

There is some existing work on integrating fingerprints into
tactile sensors. One such integration was shown in Science by
Scheibert et al. [2] where an artificial fingerprint improved fine
texture perception (spatial scale <200 μm) possibly due to spec-
tral selection and amplification of the features. Similarly, other
work has considered improving texture identification [3], [4]. In
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both cases the fingerprint is used as an amplifier of the temporal
frequency features of the textured surfaces, with results demon-
strating that use of an artificial fingerprint improves perception
of texture. Another study using a fingerprint on a tactile sensor
was performed in 2011 by Salehi et al. [5], in which they used
3 stimuli (flat, curved, and edged) to show that shape detection
is improved with the presence of a pair of papillary ridges. The
curved stimulus was chosen to be the same spatial scale as the
sensor to avoid confusion between flat and curved surfaces.

A TacTip sensor has previously been endowed with a fin-
gerprint in a study by Winstone et al. [4]; however, there are
important differences with the present study. The previous study
used a miniaturised TacTip with rings of embossed material, on
the exterior, lying above the rings of pins on the inside of the
sensing surface, and as discussed above focused on the temporal
aspects of tactile perception (using a high frequency 1 kHz cam-
era and considering texture perception). In contrast, here we use
local additions (nodules) of material on the surface of the skin
to identify more local spatial effects of tactile features; we have
also added a rigid core to enhance the stiffness contrast between
the skin and the flesh. Since we are concerned here with spatial
features, it is sufficient to use a low frame rate (30 Hz) camera.
In addition, the present study utilizes probabilistic methods for
biomimetic tactile perception that have been demonstrated to
be robust and accurate over many different stimuli and tasks
with similarities to biological sensory encoding [17], enabling
comparison with other work in tactile perception such as super-
resolution [16], [18].

III. METHODS

A. Experimental Procedure

1) The Tactile Fingertip: The TacTip is an optical tactile
sensor developed at Bristol Robotics Laboratory [4], [8], [16],
[18]–[21]. The TacTip sensor was designed to be primarily 3D
printed. This makes the sensor relativity cheap and easy to mod-
ify. The sensor uses an off-the-shelf CCD (LifeCam Cinema
HD) to track an array of pins on the internal side of a silicone
skin. It is important to note that previous work on the sensor
has utilised incorrect terminology to describe the biomimesis of
the sensor. The pins were claimed to be inspired by the dermal
papillae, although this feature of the fingertip is the part of the
dermis created by the protrusion of the epidermis. Upon closer
inspection the pins are more akin to the intermediate ridges that
protrude from the stiffer epidermis into the softer dermis tissue.

The TacTip has multiple beneficial aspects. The ready avail-
ability, low cost, and plug’n’play properties of modern webcams
mean that this sensor benefits from only having a single cable,
being easy to install, as well as remaining low cost. The silicone
skin (Vytaflex (Shore A 60)) is filled with an optically clear
gel that gives the sensor compliance. There is a difference in
the hardness of this flesh material and the skin, similarly to the
difference in stiffness between the stiffer epidermis and more
compliant dermis in the human finger. The skin has a relatively
low cost and keeps any contact far from any delicate electronics,
meaning the sensor is robust and easily replaceable if damaged.

Fig. 3. Cross sectional comparison of the TacTip tactile sensor tested in this
letter. The left tip is the basic TacTip sensor with a smooth surface. In the
middle is the tip with artificial papillary ridges. Finally the tip on the right
has the fingerprint and the further addition of an enhanced dermal/epidermal
stiffness contrast

Fig. 4. Exploded view of the modular TacTip; the tactile skin, modular body
(with bayonet fitting), and a clear acrylic lens make up the interchangeable tip
module. The main body of the sensor acts a focal length spacer for the camera,
houses the LED circuit, and is the part connected to the robotic arm. Finally,
the camera mount fits to the top of the main body, and securely fits a modified
Microsoft Lifecam.

2) TacTip Modifications: In recent work, Ward-Cherrier
et al. modified a TacTip so that the sensor could be integrated
into a thumb on a modified openhand model M2 gripper (Tac-
Thumb) [20]. In this case the skin and pins are printed as part
of the body of the sensor, rather than molded separately and
attached later. High material and time costs for setting up man-
ufacture of the original tips has limited the past optimization of
the TacTip, but as the 3D printed tips can be cheaply and easily
produced in different configurations, many different versions
can be tested for optimization.

To test the different tips the TacTip was redesigned to be
modular. This allows the tips to be interchangeable, which in
turn speeds up the test process and lowers cost (as otherwise an
entire sensor would be needed for each new tip). The modules
are a tip module that has the Tactile tip (3D printed Tango Black
+ (Shore A 26-28)), gel (RTV27905, Techsil UK (∼Shore 00
10)), lens, and a body (Vero White). The base holds the LED
ring, and is the bulk of the 3D printing (Vero White), as well
as being the connection to the Robot arm. These modules are
connected together by a secure bayonet fitting (Fig. 4).

The original TacTip was designed with a high density
(∼1.5 mm between pin centres on the surface) of small pins in a
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Fig. 5. The tip modules used in this study use a hexagonal projection for the
pin layout, which creates evenly spaced pins on the 2D CCD image (∼3.0 mm
between pin centres on the CCD image). This new layout helps support robust
pin tracking without sacrificing resolution due to the superresolved properties
of the system. On the left is raw image and right is processed image

TABLE I
TABLE OF THE STIMULI CURVATURES

Stimuli (ncs) Radius (mm) Curvature (mm−1 )

1 (Edge) 0 ∞
2 1.25 0.8000
3 2.5 0.4000
4 5 0.2000
5 10 0.1000
6 20 0.0500
7 40 0.0250
8 80 0.0125

9 (Surface) ∞ 0

geodesic pattern to produce an evenly spaced pin layout [8]. The
geodesic pattern on the hemispherical surface leads to greater
pin density towards the edges of the CCD image. Therefore a
hexagonal projection is used to create even visual spacing in
the CCD image (∼3 mm between pin centres on the CCD im-
age). The resulting pin layout is far more suitable for robust pin
tracking (Fig. 5).

The biomimetic fingerprint design was inspired by the human
fingertip by considering the mirroring of the papillary ridges
and the intermediate ridges. This was done by adding domes
(diameter 2.29 mm, height 0.5 mm) on the exterior of the skin
in a concentric alignment to the pins, to mimic the role of the
papillary ridges. The second adaptation of the tip is to include
an enhanced stiffness contrast achieved with a plastic core (Vero
White 3D printed material (Shore A 85)) that starts in the interior
of the dome/skin and connects directly to the pin tip (2.71 mm
from base of tip to base of dome). These cores are only possible
by utilising dual material 3D printing (Fig. 3). The publication
by Gerling [7] shows that the location of the mechanoreceptors
on the tip of the intermediate ridges is adventitious due to the
fact that the epidermis is stiffer than the dermis. Thus the idea is
that increasing this stiffness contrast will improve the perception
of edges, as suggested by the FEM models.

3) Experiment: To test effects of the enhancements, a set of
stimuli are developed for the sensor to examine. These stimuli
have varying curvatures, as curvature can be conveniently linked
to spatial scale. The curvatures chosen range from 0.8000 mm−1

to 0.0125 mm−1 ; the set is completed with an edge (as close
to ∞ curvature as possible) and a flat surface (0 curvature)
(Fig. 6).

Fig. 6. The 9 stimuli used in this experiment, ranging in spatial scale from an
edge (1) to flat surface (9) with intermediate curvatures ranging from 0.8 (2) to
0.0125 (8). The sensor travels (y) from right to left on each stimulus, covering
30 mm symmetrically about the apex of the stimulus.

Curvature is calculated as (radius)−1 . It is important to note
that stimuli 9 should be completely ambiguous to all sensor tips
due to its lack of changing features across the range. Stimuli 6
mirrors the curvature of the sensor itself, and 3 is approximately
the same scale as the spacing between the artificial papillary
ridges. Hence we describe spatial scales of ≤ 2.5 mm as small
and ≥ 20 mm as large, with the middle range bridging the gap
between them. Note that these definitions of spatial scale may
change for other fingertips, as the interpretation of spatial scale
depends on tip morphology.

4) Data Collection: The platform for the system was a six
degree-of-freedom robot arm (IRB 120, ABB Robotics), which
precisely positions the attached end effector with an absolute
repeatability of 0.01 mm. The TacTip sensor is used as the end
effector on this arm for this study.

The system is trained with supervised learning, by tapping
the stimuli and recording the tactile information. This is done
for every class (0.1 mm) along the y direction, up to the full
range (30 mm) for each of the stimuli. Each of the taps is a
5 mm press from 1 mm above the stimuli apex (maximum tap
indentation of 4 mm, corresponding to a maximum force of 0.3 N
on the tip) and records approximately 1.5 seconds of data, with
∼35 recorded frames per tap. By tapping the stimuli, aspects
of the material such as texture, caused by surface roughness,
will be minimised and are thus not considered here. The data
acquired for the results in this letter were collected in two distinct
sets for each stimuli, ensuring that the training and test sets
are different, and that the validation of the results is based on
sampling from an independent data set to that used to train the
classifier.

5) Data Preprocessing: The data from the TacTip sensor is
extracted from the recorded frames of each tap. Time series
are constructed from ∼35 frames with a resolution of 640 ×
480 pixels. These frames are subsequently filtered in opencv
(http://opencv.org/) using a Gaussian spatial filter with adaptive
threshold, which accommodates varying luminosity in the tip,
and a mask is applied to the edge of the image to remove glare
caused by LEDs.

Each pin is tracked from frame to frame by linking that pin’s
new location to the nearest location in the prior frame. A limita-
tion of the original TacTip was that it was difficult to track pins
due to a non-uniform pattern and high spatial density; this has
been improved with the new design by adopting a more regular
pattern with slightly larger spacing (but still sufficient for fine
spatial perception). By having a reduced density of pins (127
pins) this issue is avoidable and creates a method of pin tracking
that is robust.
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The training data is collected for a range of distinct locations
xl , 1 ≤ l ≤ Nloc where Nloc = 300 over a 30 mm of stimulus.
This is stored as a multi-dimensional time series of taxel values
z:

z = {sk (j) : 1 ≤ j ≤ Nsamples , 1 ≤ k ≤ Ndims} (1)

where the x and y components of the pin deflections are treated
as distinct data dimension sk (j), and thus the number of dimen-
sions is equal to the number of pins multiplied by the number
of spatial dimensions, Ndims = 127 × 2 = 254. Each time se-
ries is zeroed before analysis, meaning that only deflections are
considered, irrespective of the pin’s starting position. This ef-
fectively resets the sensor before each tap in the data, and acts
to reduce long term hysteresis of the sensor tip. The time series
are also truncated to 15 frames, Nsamples = 15, for each tap.
Thus the overall data dimension is (300 × {254 × 15}).

B. Classification and Validation

The collected training data set is used in a standard ‘his-
togram’ likelihood model. The histogram model has been indi-
cated as analogous to spatial and temporal summation in neurons
[17], but those aspects will not be central here. This classifier
has been used in past work by the group for similar work with
posterior estimation [16]–[18]. Hence, for constancy with past
work we continue its use here. The histogram model is con-
structed by encoding the training to determine the increment of
evidence for each perceptual hypothesis based on the logarithm
of a likelihood model of the contact data.

log P (z|yl) =
Ndims∑

k=1

N samples∑

j=1

log Pk (sk (j)|(yl)
NsamplesNdims

(2)

assuming statistical independence between all data dimensions
k and time samples j. A histogram method is then applied to
the training data, where sensor values sk are binned into equal
intervals Ib , 1 ≤ b ≤ Nbins for the entire range of the training
data.

Pk (sk |yl) = Pk (b|yl) =
nkl(b) + ε

∑Nbins
b=1 nkl(b)

(3)

The sample count in each bin b for dimension k over all training
data in class yl is nkl(b) (ε � 1 a small constant that regularizes
the logarithm).

A Monte Carlo procedure is used to randomly sample data
from the test set. The sampled data is used in the above method to
classify locations, returning the training class with the maximum
likelihood to the sampled data. This is repeated with 10000
iterations of a Monte Carlo procedure to sample all the data
classes in the test set. The difference in perceived and actual
class location is the error in the perception.

IV. RESULTS

A. Inspection of Data

The effect of varying sensor location (y) over the stimulating
feature changes the extent to which the pins displace, both in
magnitude and direction. Each time-series is a distinct set of

Fig. 7. The graphs above represent the pin deflections collected by the smooth
tip (left), fingerprint (middle column), and fingerprint with cores (right), for
stimulus 1 (top), 4 (middle row), and 8 (bottom) over a 30 mm range. It can be
seen that the rate of change of pin deflection over the length of the recording,
becomes lower on higher spatial scale stimuli. It is important to note that this
rate is improved for the fingerprint tips, over the smooth, on the smaller spatial
scales.

displacements for that particular surface structure. As the data
contains a large amount of information about specific locations,
it permits location perception. As with any classification, the
lower the ambiguity is over the stimulus/data, the greater the
accuracy of perception. The data sets are shown in Fig. 7 (for
stimuli 1, 4, and 8) to demonstrate the effects of varying the
spatial scale.

Data from the tips contacting smaller spatial features show a
high rate (deflection/class location) of change in pin deflection
(e.g. stimulus 1 shown in Fig. 7(a), (b), and (c)) when com-
pared to that of the high spatial scales (e.g. stimulus 8 shown in
Fig. 7(g), (h), and (i)).

When comparing the data sets for the smaller spatial scales
between the tips, there is a visible change in the structure of the
data. This is an increase in the rate of pin deflection per unit
length (Fig. 7(b), and (c)). This increase in rate of deflection
at smaller scales is highlighted by the values of the average
absolute differential of the data. These values are obtained by
calculating the differentials at every class for each taxel, after
noise is reduced via a 5 point moving average. The differentials
are taken as absolute and averaged across taxels, between the
contact range of 5 mm and 25 mm, then for the set. The aver-
age absolute differential shows that, in the direction of travel
(y), the value is up from 0.59 pixels mm−1 for the smooth to
0.96 pixels mm−1 and 1.03 pixels mm−1 for the fingerprint and
fingerprint with cores respectively, on stimuli 1 (Fig. 8). The
direction of travel is relevant here as it appears that the fin-
gerprint has the greatest influence in that dimension for these
stimulus. This means that the data for the fingerprint tips is
inherently less ambiguous (sharper) in the direction of sensor
travel (y), and thus more conducive to perception of location and
classification.
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Fig. 8. Plotting the average absolute differential for each tip on each stimulus shows that the rate of change of pin deflection for the fingerprinted tips is improved
over that of the smooth tip, for small spatial scales. This is most notable in the direction of travel (y). This difference in rate of change of pin deflection quickly
dissipates as you increase the spatial scale of the stimulus and may help make the data for the fingerprinted tips less ambiguous at lower spatial scales.

B. Error Analysis of Classification

Using the Monte-Carlo analysis described in Section III-B,
the data is processed off-line to determine the perceived location
class of samples from a test set. The distance from the real
location is taken as the error in localization eloc(y). These errors
can be plotted to highlight regions of high and low ambiguity
(Fig. 9). The graphs (using the same stimulus sample as in
Fig. 7) show the regions of no contact for stimulus 1 and 4, these
are below 5 mm and above 25 mm. These no contact regions
inherently detect no changes in the sensor and thus are totally
ambiguous. The contact region of stimulus 1 is the smallest and
it is chosen to be the comparison range for all the stimuli (5 mm–
25 mm). In this range it is clear that error increases in size, for
all tips, as you move up in stimulus scale. This is consistent with
the visual increases in ambiguity mentioned about Fig. 7.

To compare the tips themselves the mean error of the contact
range (5 mm–25 mm) is taken. The mean localization error
provides a single value for the overall performance of the tip

on that stimulus. When plotted together it can clearly be seen
that the error increases with the spatial scale (Fig. 10 Top). The
errors become extremely large for stimulus 9; this was expected
as a flat surface has no discernible features.

To draw out the changes in sensor accuracy, due to the pres-
ence of the added features, the relative errors are calculated
using the smooth tip as the base (Fig. 10 Bottom). The results
show that the presence of the papillary ridges, irrespective of
the enhanced dermal stiffness contrast, improves the accuracy
of the sensor to 140–170% of the accuracy of the smooth tip,
for spatial scales of 2.5 mm and less. For stimulus 4 and 5 the
accuracy of the fingerprint tip is similar to that of the smooth
tip, before dropping of to 80% of the accuracy of the smooth
tip for the reaming stimuli (spatial scales 20 mm and greater).
Interestingly the fingerprint (cores) tip remains more accurate
for stimulus 4 and 5 and tends towards a similar accuracy to the
smooth tip for the larger spatial scales, in contrast to fingerprint
tip. This suggests that the enhanced dermal stiffness contrast
contracts negative effects of the artificial papillary ridges on



1342 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 2, NO. 3, JULY 2017

Fig. 9. For the same three stimuli as show in Fig. 7 the graphs represent the error in perception over the stimulus. The range of 0–5 mm and 25–30 mm show
poor errors for stimulus 1 and 4, this is expected as the sensor is not in contact at these locations. Through the considered range (5–25 mm) it is clear that the
errors are lower for stimulus 1, and higher for stimulus 8 (consistent for all tips). It can be seen from the graphs that the fingerprint (cores) is better over all shown
stimuli, whereas the fingerprint appears to be the least accurate for 8, and the smooth has the highest errors for 1 and 4.

Fig. 10. By taking the mean error for each tip and stimulus, over the contact
range (Top), it can be seen that the errors increase with the size of the spatial
scale, as expected from the data sets. Stimulus 9 is a flat surface with 0 curvature
and thus is totally ambiguous, hence the sharp rise in error. To fully identify
the effect of the modifications, the errors are calculated relative to the smooth
tip (Bottom). This demonstrates the increase in location perception, due to the
fingerprint, on smaller spatial scales. It also highlights the negative impact of
the fingerprint on large spatial scales, and that this is negated by the fingerprint
(cores) tip. (a) Mean location classification accuracy. (b) Relative percentage
change of classification accuracy (smooth as base).

larger spatial scale stimuli. By the looking at the average root
mean square difference of taps between data sets, where the val-
ues are 0.303, 0.316, and 0.286 pixels for smooth, fingerprint,
and fingerprint (cores) respectively, it can be said there is an
improvement in the repeatability of the sensor.

V. DISCUSSION

In this study we set out to show that the addition of biomimetic
aspects of the human fingerprint to a biomimetic fingertip would
improve the localisation perception accuracy of small spatial

scales in much the same way as they are believed to in the
human fingertip.

We found that the inclusion of papillary ridges on our tactile
sensor improves the accuracy of location perception on small
spatial scale (≤2.5 mm) to 140–170% of the accuracy of the
sensor without this feature. This confirms our prediction that
including papillary ridges on a biomimetic tactile sensor en-
hances the focusing of the stress induced by contact down the
pins (intermediate ridges), increasing the rate of change in de-
flection directionality (from 0.59 pixels mm−1 in smooth to
1.03 pixels mm−1 in the fingerprint (cores), thus sharpening the
sensory recordings. This result also supports the belief that these
ridges are linked to edge encoding in human tactile sensing. As
mentioned, the definitions of spatial scale used here may change
for other fingertips, as the interpretation of spatial scale depends
on tip morphology.

There was an expectation that enhancing the dermal stiffness
contrast would aid edge encoding and sensing on the smaller
spatial scales. However, the results did not support this expecta-
tion: the tip with this enhancement was no better nor worse than
the fingerprint tip without it. At first sight this would appearer
to contradict the FEM model from Gerling [7], which claims
that the stiffness contrast at the tip of the intermediate ridges
enhances edge encoding. On close examination however, the
TacTip already has a contrast between skin and flesh, thus the
enhancement used may not have been a necessary addition for
enhancing edge encoding.

There was a clear impact on the perceptual accuracy of the
tip with the papillary ridges on the larger spatial scale of 20 mm
up. The reason for this impact is unknown but may be due to
noise in the deflection of the pins, instigated by the interaction
between the ridges and the more gradual surfaces at this scale.
Interestingly this same effect seems to be absent in the finger-
print (cores) tip. This suggest that the fingerprint tip could be
noisy due to the compression of the ridges into the pins causing
inconsistent deflections, as the cores would resist compression
and thus reflect the surface of more gradual surfaces as if it was
a single plainer surface like the smooth tip. This is supported
by the average root mean square differences that show that the
fingerprint (cores) tip has better repeatability across sets (0.286)
when compared to the fingerprint (0.316) and the smooth tip
(0.303).
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To date, research has shown that the fingerprint aids high tem-
poral frequencies perception [2]–[4] and lightly touched on its
influence on local shape detection [5]. The present research pro-
vides strong evidence for advantageous influences of the finger-
print on the perception of small spatial scales for both robotics
and biology. In addition to this, our findings have shown that
having very stiff intermediate ridges may support the papillary
ridges and prevent them from impairing tactile sense on large
spatial scales.

The inclusion of the fingerprint on the tactile sensor requires
minimal extra material, yet provides a strong increases in the
versatility of the sensor. Thus papillary ridges could be used
to improve other compliant tactile sensors. We expect that the
inclusion of the artificial fingerprint in biomimetic fingertips
will improve their ability to perform tactile tasks such as edge
perception/exploration following and fine feature classification,
with potential implications for object perception and manipula-
tion with robotic hands.

VI. CONCLUSION

This study demonstrates that the location perception of a
biomimetic tactile sensor can be improved on small spatial
scales by the inclusion of papillary ridges (by up to 140–170%
when compared with the smooth tip). It was also found that an
enhanced dermal stiffness contrast negates the negative effects
of papillary ridges on larger spatial scales in our tip. Therefore,
the inclusion of these biomimetic features on other tactile
sensors with biomimetic properties should improve the tactile
acuity and versatility of the sensors also this study supports
the concept that the fingerprint is an amplifier of small spatial
scale stimulus, and is thus an extremely versatile adaptation of
the human fingertip.
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