1,430 research outputs found

    Biochemical characterization of Cdk2-Speedy/Ringo A2

    Get PDF
    BACKGROUND: Normal cell cycle progression requires the precise activation and inactivation of cyclin-dependent protein kinases (CDKs), which consist of a CDK and a cyclin subunit. A novel cell cycle regulator called Speedy/Ringo shows no sequence similarity to cyclins, yet can directly bind to and activate CDKs. Speedy/Ringo proteins, which bind to and activate Cdc2 and Cdk2 in vitro, are required for the G2 to M transition during Xenopus oocyte maturation and for normal S-phase entry in cultured human cells. RESULTS: We have characterized the substrate specificity and enzymatic activity of human Cdk2-Speedy/Ringo A2 in order to gain insights into the possible functions of this complex. In contrast to Cdk2-cyclin A, which has a well-defined consensus target site ((S/T)PX(K/R)) that strongly favors substrates containing a lysine at the +3 position of substrates, Cdk2-Speedy/Ringo A2 displayed a broad substrate specificity at this position. Consequently, Cdk2-Ringo/Speedy A2 phosphorylated optimal Cdk2 substrates such as histone H1 and a KSPRK peptide poorly, only ~0.08% as well as Cdk2-cyclin A, but non-canonical Cdk2 substrates such as a KSPRY peptide relatively well, with an efficiency of ~80% compared to Cdk2-cyclin A. Cdk2-Speedy/Ringo A2 also phosphorylated authentic Cdk2 substrates, such as Cdc25 proteins, which contain non-canonical CDK phosphorylation sites, nearly as well as Cdk2-cyclin A. Phosphopeptide mapping indicated that Cdk2-Speedy/Ringo A2 and Cdk2-cyclin A phosphorylate distinct subsets of sites on Cdc25 proteins. Thus, the low activity that Cdk2-Speedy/Ringo A2 displays when assayed on conventional Cdk2 substrates may significantly underestimate the potential physiological importance of Cdk2-Speedy/Ringo A2 in phosphorylating key subsets of Cdk2 substrates. Unlike Cdk2-cyclin A, whose activity depends strongly on activating phosphorylation of Cdk2 on Thr-160, neither the overall catalytic activity nor the substrate recognition by Cdk2-Speedy/Ringo A2 was significantly affected by this phosphorylation. Furthermore, Cdk2-Speedy/Ringo A2 was not a suitable substrate for metazoan CAK (which phosphorylates Cdk2 at Thr-160), supporting the notion that Speedy/Ringo A2 activates Cdk2 in a CAK-independent manner. CONCLUSION: There are major differences in substrate preferences between CDK-Speedy/Ringo A2 and Cdk2-cyclin complexes. These differences may accommodate the CAK-independent activation of Cdk2 by Speedy/Ringo A2 and they raise the possibility that CDK-Speedy/Ringo A2 complexes could phosphorylate and regulate a subset of non-canonical CDK substrates, such as Cdc25 protein phosphatases, to control cell cycle progression

    Biochemical characterization of mammalian Cdk2-Speedy/Ringo

    Get PDF
    Background: Normal cell cycle progression requires the precise activation and inactivation of cyclin-dependent protein kinases (CDKs), which consist of a CDK and a cyclin subunit. A novel cell cycle regulator called Speedy/Ringo shows no sequence similarity to cyclins, yet can directly bind to and activate CDKs. Speedy/Ringo proteins, which bind to and activate Cdc2 and Cdk2 in vitro, are required for the G2 to M transition during Xenopus oocyte maturation and for normal S-phase entry in cultured human cells. Results: We have characterized the substrate specificity and enzymatic activity of human Cdk2-Speedy/Ringo A2 in order to gain insights into the possible functions of this complex. In contrast to Cdk2-cyclin A, which has a well-defined consensus target site ((S/T)PX(K/R)) that strongly favors substrates containing a lysine at the +3 position of substrates, Cdk2-Speedy/Ringo A2 displayed a broad substrate specificity at this position. Consequently, Cdk2-Ringo/Speedy A2 phosphorylated optimal Cdk2 substrates such as histone H1 and a KSPRK peptide poorly, only ~0.08% as well as Cdk2-cyclin A, but non-canonical Cdk2 substrates such as a KSPRY peptide relatively well, with an efficiency of ~80% compared to Cdk2-cyclin A. Cdk2-Speedy/Ringo A2 also phosphorylated authentic Cdk2 substrates, such as Cdc25 proteins, which contain non-canonical CDK phosphorylation sites, nearly as well as Cdk2-cyclin A. Phosphopeptide mapping indicated that Cdk2-Speedy/Ringo A2 and Cdk2-cyclin A phosphorylate distinct subsets of sites on Cdc25 proteins. Thus, the low activity that Cdk2-Speedy/Ringo A2 displays when assayed on conventional Cdk2 substrates may significantly underestimate the potential physiological importance of Cdk2-Speedy/Ringo A2 in phosphorylating key subsets of Cdk2 substrates. Unlike Cdk2-cyclin A, whose activity depends strongly on activating phosphorylation of Cdk2 on Thr-160, neither the overall catalytic activity nor the substrate recognition by Cdk2-Speedy/Ringo A2 was significantly affected by this phosphorylation. Furthermore, Cdk2-Speedy/Ringo A2 was not a suitable substrate for metazoan CAK (which phosphorylates Cdk2 at Thr-160), supporting the notion that Speedy/Ringo A2 activates Cdk2 in a CAK-independent manner. Conclusion: There are major differences in substrate preferences between CDK-Speedy/Ringo A2 and Cdk2-cyclin complexes. These differences may accommodate the CAK-independent activation of Cdk2 by Speedy/Ringo A2 and they raise the possibility that CDK-Speedy/Ringo A2 complexes could phosphorylate and regulate a subset of non-canonical CDK substrates, such as Cdc25 protein phosphatases, to control cell cycle progression

    Statistical Physics of Irregular Low-Density Parity-Check Codes

    Get PDF
    Low-density parity-check codes with irregular constructions have been recently shown to outperform the most advanced error-correcting codes to date. In this paper we apply methods of statistical physics to study the typical properties of simple irregular codes. We use the replica method to find a phase transition which coincides with Shannon's coding bound when appropriate parameters are chosen. The decoding by belief propagation is also studied using statistical physics arguments; the theoretical solutions obtained are in good agreement with simulations. We compare the performance of irregular with that of regular codes and discuss the factors that contribute to the improvement in performance.Comment: 20 pages, 9 figures, revised version submitted to JP

    SciMiner: web-based literature mining tool for target identification and functional enrichment analysis

    Get PDF
    Summary:SciMiner is a web-based literature mining and functional analysis tool that identifies genes and proteins using a context specific analysis of MEDLINE abstracts and full texts. SciMiner accepts a free text query (PubMed Entrez search) or a list of PubMed identifiers as input. SciMiner uses both regular expression patterns and dictionaries of gene symbols and names compiled from multiple sources. Ambiguous acronyms are resolved by a scoring scheme based on the co-occurrence of acronyms and corresponding description terms, which incorporates optional user-defined filters. Functional enrichment analyses are used to identify highly relevant targets (genes and proteins), GO (Gene Ontology) terms, MeSH (Medical Subject Headings) terms, pathways and protein–protein interaction networks by comparing identified targets from one search result with those from other searches or to the full HGNC [HUGO (Human Genome Organization) Gene Nomenclature Committee] gene set. The performance of gene/protein name identification was evaluated using the BioCreAtIvE (Critical Assessment of Information Extraction systems in Biology) version 2 (Year 2006) Gene Normalization Task as a gold standard. SciMiner achieved 87.1% recall, 71.3% precision and 75.8% F-measure. SciMiner's literature mining performance coupled with functional enrichment analyses provides an efficient platform for retrieval and summary of rich biological information from corpora of users' interests

    Ellipse-based Principal Component Analysis for Self-intersecting Curve Reconstruction from Noisy Point Sets

    Get PDF
    Surface reconstruction from cross cuts usually requires curve reconstruction from planar noisy point samples -- The output curves must form a possibly disconnected 1manifold for the surface reconstruction to proceed -- This article describes an implemented algorithm for the reconstruction of planar curves (1manifolds) out of noisy point samples of a sel-fintersecting or nearly sel-fintersecting planar curve C -- C:[a,b]⊂R→R is self-intersecting if C(u)=C(v), u≠v, u,v∈(a,b) (C(u) is the self-intersection point) -- We consider only transversal self-intersections, i.e. those for which the tangents of the intersecting branches at the intersection point do not coincide (C′(u)≠C′(v)) -- In the presence of noise, curves which self-intersect cannot be distinguished from curves which nearly sel fintersect -- Existing algorithms for curve reconstruction out of either noisy point samples or pixel data, do not produce a (possibly disconnected) Piecewise Linear 1manifold approaching the whole point sample -- The algorithm implemented in this work uses Principal Component Analysis (PCA) with elliptic support regions near the selfintersections -- The algorithm was successful in recovering contours out of noisy slice samples of a surface, for the Hand, Pelvis and Skull data sets -- As a test for the correctness of the obtained curves in the slice levels, they were input into an algorithm of surface reconstruction, leading to a reconstructed surface which reproduces the topological and geometrical properties of the original object -- The algorithm robustly reacts not only to statistical noncorrelation at the self-intersections(nonmanifold neighborhoods) but also to occasional high noise at the nonselfintersecting (1manifold) neighborhood

    Subcellular heterogeneity of ryanodine receptor properties in ventricular myocytes with low T-tubule density

    Get PDF
    Rationale: In ventricular myocytes of large mammals, not all ryanodine receptor (RyR) clusters are associated with T-tubules (TTs); this fraction increases with cellular remodeling after myocardial infarction (MI). Objective: To characterize RyR functional properties in relation to TT proximity, at baseline and after MI. Methods: Myocytes were isolated from left ventricle of healthy pigs (CTRL) or from the area adjacent to a myocardial infarction (MI). Ca2+ transients were measured under whole-cell voltage clamp during confocal linescan imaging (fluo-3) and segmented according to proximity of TTs (sites of early Ca2+ release, F>F50 within 20 ms) or their absence (delayed areas). Spontaneous Ca2+ release events during diastole, Ca2+ sparks, reflecting RyR activity and properties, were subsequently assigned to either category. Results: In CTRL, spark frequency was higher in proximity of TTs, but spark duration was significantly shorter. Block of Na+/Ca2+ exchanger (NCX) prolonged spark duration selectively near TTs, while block of Ca2+ influx via Ca2+ channels did not affect sparks properties. In MI, total spark mass was increased in line with higher SR Ca2+ content. Extremely long sparks (>47.6 ms) occurred more frequently. The fraction of near-TT sparks was reduced; frequency increased mainly in delayed sites. Increased duration was seen in near-TT sparks only; Ca2+ removal by NCX at the membrane was significantly lower in MI. Conclusion: TT proximity modulates RyR cluster properties resulting in intracellular heterogeneity of diastolic spark activity. Remodeling in the area adjacent to MI differentially affects these RyR subpopulations. Reduction of the number of sparks near TTs and reduced local NCX removal limit cellular Ca2+ loss and raise SR Ca2+ content, but may promote Ca2+ waves

    Constraining ultralight vector dark matter with the Parkes Pulsar Timing Array second data release

    Full text link
    Composed of ultralight bosons, fuzzy dark matter provides an intriguing solution to challenges that the standard cold dark matter model encounters on sub-galactic scales. The ultralight dark matter with mass m1023eVm\sim10^{-23} \rm{eV} will induce a periodic oscillation in gravitational potentials with a frequency in the nanohertz band, leading to observable effects in the arrival times of radio pulses from pulsars. Unlike scalar dark matter, pulsar timing signals induced by the vector dark matter are dependent on the oscillation direction of the vector fields. In this work, we search for ultralight vector dark matter in the mass range of [2×1024,2×1022]eV[2\times 10^{-24}, 2\times 10^{-22}]{\rm{eV}} through its gravitational effect in the Parkes Pulsar Timing Array (PPTA) second data release. Since no statistically significant detection is made, we place 95%95\% upper limits on the local dark matter density as ρVF5GeV/cm3\rho_{\rm{\tiny{VF}}} \lesssim 5{\rm{GeV/cm^{3}}} for m1023eVm\lesssim 10^{-23}{\rm{eV}}. As no preferred direction is found for the vector dark matter, these constraints are comparable to those given by the scalar dark matter search with an earlier 12-year data set of PPTA.Comment: 9 pages, 3 figures, 2 tables; accepted for publication as a Letter in Phys. Rev.
    corecore