965 research outputs found
Rotational dynamics of a superhelix towed in a Stokes fluid
Motivated by the intriguing motility of spirochetes (helically-shaped
bacteria that screw through viscous fluids due to the action of internal
periplasmic flagella), we examine the fundamental fluid dynamics of
superhelices translating and rotating in a Stokes fluid. A superhelical
structure may be thought of as a helix whose axial centerline is not straight,
but also a helix. We examine the particular case where these two superimposed
helices have different handedness, and employ a combination of experimental,
analytic, and computational methods to determine the rotational velocity of
superhelical bodies being towed through a very viscous fluid. We find that the
direction and rate of the rotation of the body is a result of competition
between the two superimposed helices; for small axial helix amplitude, the body
dynamics is controlled by the short-pitched helix, while there is a cross-over
at larger amplitude to control by the axial helix. We find far better, and
excellent, agreement of our experimental results with numerical computations
based upon the method of Regularized Stokeslets than upon the predictions of
classical resistive force theory
Acute and chronic effects of acidic pH on four subtropical frog species
Acidic precipitation is implicated as a possible cause of global amphibian decline. Even protected areas such as Kruger National Park receive acid rain which may lead to possible negative effects on the park’s natural amphibian populations. We conducted acute (LC50) and chronic acid tolerance bioassays on embryos and tadpoles of four frog species found in the park, i.e., Chiromantis xerampelina (Southern Foam Nest Frog), Pyxicephalus edulis (African Bullfrog), Amietophrynus maculatus (Flat-backed Toad) and Hildebrandtia ornata (Ornate Frog), using survival, deformities and growth as endpoints. Chronic exposure pH-values were selected based on the results of the acute assays. Trimmed Spearman-Karber LC50s were 4.07, 4.55, 3.75 and 3.747 for C. xerampelina, P. edulis, A. maculatus and H. ornata, respectively, and were all below the pHs in the natural ponds of the KNP. For chronic exposures tadpole size decreased and tadpole deformities increased with decreasing pH. Metamorphosis of tadpoles was also delayed by increasing acidity. In conclusion, the current buffering capacity of water bodies, which serve as habitat for amphibians, negates the effects of decreasing pH from acid precipitation.Keywords: low pH, acid precipitation, amphibians, mortality, developmental deformities, delayed metamorphosis, Kruger National Par
Pt, Au, Pd and Ru Partitioning Between Mineral and Silicate Melts: The Role of Metal Nanonuggets
The partition coefficients of Pt and other Pt Group Elements (PGE) between metal and silicate D(sub Metal-Silicate) and also between silicate minerals and silicate melts D(sub Metal-Silicate) are among the most challenging coefficients to obtain precisely. The PGE are highly siderophile elements (HSE) with D(sub Metal-Silicate) >10(exp 3) due to the fact that their concentrations in silicates are very low (ppb to ppt range). Therefore, the analytical difficulty is increased by the possible presence of HSE-rich-nuggets in reduced silicate melts during experiments). These tiny HSE nuggets complicate the interpretation of measured HSE concentrations. If the HSE micro-nuggets are just sample artifacts, then their contributions should be removed before calculations of the final concentration. On the other hand, if they are produced during the quench, then they should be included in the analysis. We still don't understand the mechanism of nugget formation well. Are they formed during the quench by precipitation from precursor species dissolved homogeneously in the melts, or are they precipitated in situ at high temperature due to oversaturation? As these elements are important tracers of early planetary processes such as core formation, it is important to take up this analytical and experimental challenge. In the case of the Earth for example, chondritic relative abundances of the HSE in some mantle xenoliths have led to the concept of the "late veneer" as a source of volatiles (such as water) and siderophiles in the silicate Earth. Silicate crystal/liquid fractionation is responsible for most, if not all, the HSE variation in the martian meteorite suites (SNC) and Pt is the element least affected by these fractionations. Therefore, in terms of reconstructing mantle HSE abundances for Mars, Pt becomes a very important player. In the present study, we have performed high temperature experiments under various redox conditions in order to determine the abundances of Pt, Au, Ru and Pd in minerals (olivine and diopside) and in silicate melts, but also to characterize the sizes, density and chemistry of HSE nuggets when present in the samples
Revealing RNA virus diversity and evolution in unicellular algae transcriptomes
Abstract
Remarkably little is known about the diversity and evolution of RNA viruses in unicellular eukaryotes. We screened a total of 570 transcriptomes from the Marine Microbial Eukaryote Transcriptome Sequencing Project that encompasses a wide diversity of microbial eukaryotes, including most major photosynthetic lineages (i.e. the microalgae). From this, we identified thirty new and divergent RNA virus species, occupying a range of phylogenetic positions within the overall diversity of RNA viruses. Approximately one-third of the newly described viruses comprised single-stranded positive-sense RNA viruses from the order Lenarviricota associated with fungi, plants, and protists, while another third were related to the order Ghabrivirales, including members of the protist and fungi-associated Totiviridae. Other viral species showed sequence similarity to positive-sense RNA viruses from the algae-associated Marnaviridae, the double-stranded RNA (ds-RNA) Partitiviridae, as well as tentative evidence for one negative-sense RNA virus related to the Qinviridae. Importantly, we were able to identify divergent RNA viruses from distant host taxa, revealing the ancestry of these viral families and greatly extending our knowledge of the RNA viromes of microalgal cultures. Both the limited number of viruses detected per sample and the low sequence identity to known RNA viruses imply that additional microalgal viruses exist that could not be detected at the current sequencing depth or were too divergent to be identified using sequence similarity. Together, these results highlight the need for further investigation of algal-associated RNA viruses as well as the development of new tools to identify RNA viruses that exhibit very high levels of sequence divergence.</jats:p
Dignity and Narrative Medicine
Critiques of the dehumanising aspects of contemporary medical practice have generated increasing interest in the ways in which health care can foster a holistic sense of wellbeing. We examine the relationship between two areas of this humanistic endeavour: narrative and dignity. This paper makes two simple arguments that are intuitive but have not yet been explored in detail: that narrative competence of carers is required for maintaining or recreating dignity, and that dignity promotion in health care practice is primarily narrative in form. The multiple meanings that dignity has in a person’s life are what give the concept power and can only be captured by narrative. This has implications for health care practice where narrative work will be increasingly required to support patient dignity in under-resourced and over-subscribed health care system
Islet neogenesis is stimulated by brief occlusion of the main pancreatic duct
Objective. Current models of islet neogenesis either cause substantial pancreatic damage or continuously stimulate the pancreas, making these models unsuitable for the study of early events that occur in the neogenic process. We aimed to develop a method where the initial events that culminate in increased pancreatic endocrine mass caube studied. Design and methods. Ten 12-week-old female Wistar rats were subjected to a midline laparotomy, the pancreas was isolated and the main pancreatic duct was occluded for 60 seconds. The pancreas was released and carefully relocated within the abdomen. Ten age-, strain- and sex-matched control rats were subjected to a sham operation. The animals were killed 56 days post .occlusion, and the pancreata excised and fiXed tor histological analysis. Body, pancreatic and hepatic weights were .noted at termination. and serum was taken for analysis. The endocrine-to-exocrine. ratio was calculated and the number of endocrine cells in eacn islet from the sectioned pancreata was counted. Results. Occlusion of the main pancreatic ductfor 60 seconds results in an increase in endocrine mass. by 80% 56 days post occlusion. This constitutes an increase in endocrine units (1 - 6 cellst and in small (7 - 30 cells), medium (31 - 60 cells) and large (> 60 cells) islets by 85%, 96%, 95% and 71% respectively. Conclusion. Brief occlusion of the main pancreatic duct results in anincrease in pancreatic endocrine. mass. An increase in endocrine units and small islets is indicative of islet neogenesis. Therefore, owing to the briefness of the stimulation; this model can therefore be used to study the iniUal events that occur during the neogenic process
Clocking the Lyme Spirochete
In order to clear the body of infecting spirochetes, phagocytic cells must be able to get hold of them. In real-time phase-contrast videomicroscopy we were able to measure the speed of Borrelia burgdorferi (Bb), the Lyme spirochete, moving back and forth across a platelet to which it was tethered. Its mean crossing speed was 1,636 µm/min (N = 28), maximum, 2800 µm/min (N = 3). This is the fastest speed recorded for a spirochete, and upward of two orders of magnitude above the speed of a human neutrophil, the fastest cell in the body. This alacrity and its interpretation, in an organism with bidirectional motor capacity, may well contribute to difficulties in spirochete clearance by the host
Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players
We present the concept of fiber-flux density for locally quantifying white
matter (WM) fiber bundles. By combining scalar diffusivity measures (e.g.,
fractional anisotropy) with fiber-flux measurements, we define new local
descriptors called Fiber-Flux Diffusion Density (FFDD) vectors. Applying each
descriptor throughout fiber bundles allows along-tract coupling of a specific
diffusion measure with geometrical properties, such as fiber orientation and
coherence. A key step in the proposed framework is the construction of an FFDD
dissimilarity measure for sub-voxel alignment of fiber bundles, based on the
fast marching method (FMM). The obtained aligned WM tract-profiles enable
meaningful inter-subject comparisons and group-wise statistical analysis. We
demonstrate our method using two different datasets of contact sports players.
Along-tract pairwise comparison as well as group-wise analysis, with respect to
non-player healthy controls, reveal significant and spatially-consistent FFDD
anomalies. Comparing our method with along-tract FA analysis shows improved
sensitivity to subtle structural anomalies in football players over standard FA
measurements
Initial Characterization of the FlgE Hook High Molecular Weight Complex of Borrelia burgdorferi
The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility
Four Butterflies: End of Life Stories of Transition and Transformation
In this article, the author discusses her experiences as an Artist In Residence in the
Department of Palliative Care and Rehabilitation Medicine at the University of Texas M. D.
Anderson Cancer Center. Emphasis is placed on the ways in which end of life images and
narratives often unfold in the fragile yet powerful space where conceptions of aesthetics and
spirituality intersect with critical issues in the medical humanities. Drawing on four vivid
case studies, the author examines the ways in which end of life narratives shed valuable light on
conceptions of the subtlety of human embodiment; issues of violation, sorrow, and forgiveness;
the mystical dimensions of traditional cultural beliefs; and the capacity for perceiving the
natural world as a living symbol of grace. In so doing, she explores how the themes of transition
and transformation become invested with meaningful existential and symbolic dimensions in
artworks that give voice and presence to some of the most vulnerable, and often invisible,
members of our societyï¾—people at the end of life
- …