503 research outputs found

    TRAPPIST: a robotic telescope dedicated to the study of planetary systems

    Full text link
    We present here a new robotic telescope called TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope). Equipped with a high-quality CCD camera mounted on a 0.6 meter light weight optical tube, TRAPPIST has been installed in April 2010 at the ESO La Silla Observatory (Chile), and is now beginning its scientific program. The science goal of TRAPPIST is the study of planetary systems through two approaches: the detection and study of exoplanets, and the study of comets. We describe here the objectives of the project, the hardware, and we present some of the first results obtained during the commissioning phase.Comment: To appear in Detection and Dynamics of Transiting Exoplanets, Proceedings of Haute Provence Observatory Colloquium (23-27 August 2010), eds. F. Bouchy, R.F. Diaz & C.Moutou, Platypus press 201

    Dissociative attachment in HCl, DCl, and F2

    Get PDF
    Resonant scattering models, using nonlocal decay widths, are developed for dissociative attachment of slow electrons to diatomic molecules. Cross sections are obtained for HCl and DCl in several initial rotational and vibrational states, and the dependence of the average attachment cross section upon the rotational and vibrational temperature is examined. For F_2 the cross section for ground state molecules agrees well with experiment above 0.2 eV but shows no zero energy peak. The attachment cross section is higher for vibrationally excited molecules, but the enhancement is much less than that found in H_2 and HCl

    COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223

    Full text link
    We present accurate time delays for the quadruply imaged quasar HE 0435-1223. The delays were measured from 575 independent photometric points obtained in the R-band between January 2004 and March 2010. With seven years of data, we clearly show that quasar image A is affected by strong microlensing variations and that the time delays are best expressed relative to quasar image B. We measured Delta_t(BC) = 7.8+/-0.8 days, Delta_t(BD) = -6.5+/-0.7 days and Delta_t_CD = -14.3+/-0.8 days. We spacially deconvolved HST NICMOS2 F160W images to derive accurate astrometry of the quasar images and to infer the light profile of the lensing galaxy. We combined these images with a stellar population fitting of a deep VLT spectrum of the lensing galaxy to estimate the baryonic fraction, fbf_b, in the Einstein radius. We measured f_b = 0.65+0.13-0.10 if the lensing galaxy has a Salpeter IMF and f_b = 0.45+0.04-0.07 if it has a Kroupa IMF. The spectrum also allowed us to estimate the velocity dispersion of the lensing galaxy, sigma_ap = 222+/-34 km/s. We used f_b and sigma_ap to constrain an analytical model of the lensing galaxy composed of an Hernquist plus generalized NFW profile. We solve the Jeans equations numerically for the model and explored the parameter space under the additional requirement that the model must predict the correct astrometry for the quasar images. Given the current error bars on f_b and sigma_ap, we did not constrain H0 yet with high accuracy, i.e., we found a broad range of models with chi^2 < 1. However, narrowing this range is possible, provided a better velocity dispersion measurement becomes available. In addition, increasing the depth of the current HST imaging data of HE 0435-1223 will allow us to combine our constraints with lens reconstruction techniques that make use of the full Einstein ring that is visible in this object.Comment: 12 pages, 10 figures, final version accepted for publication by A&

    COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses VII. Time delays and the Hubble constant from WFI J2033-4723

    Full text link
    Gravitationally lensed quasars can be used to map the mass distribution in lensing galaxies and to estimate the Hubble constant H0 by measuring the time delays between the quasar images. Here we report the measurement of two independent time delays in the quadruply imaged quasar WFI J2033-4723 (z = 1.66). Our data consist of R-band images obtained with the Swiss 1.2 m EULER telescope located at La Silla and with the 1.3 m SMARTS telescope located at Cerro Tololo. The light curves have 218 independent epochs spanning 3 full years of monitoring between March 2004 and May 2007, with a mean temporal sampling of one observation every 4th day. We measure the time delays using three different techniques, and we obtain Dt(B-A) = 35.5 +- 1.4 days (3.8%) and Dt(B-C) = 62.6 +4.1/-2.3 days (+6.5%/-3.7%), where A is a composite of the close, merging image pair. After correcting for the time delays, we find R-band flux ratios of F_A/F_B = 2.88 +- 0.04, F_A/F_C = 3.38 +- 0.06, and F_A1/F_A2 = 1.37 +- 0.05 with no evidence for microlensing variability over a time scale of three years. However, these flux ratios do not agree with those measured in the quasar emission lines, suggesting that longer term microlensing is present. Our estimate of H0 agrees with the concordance value: non-parametric modeling of the lensing galaxy predicts H0 = 67 +13/-10 km s-1 Mpc-1, while the Single Isothermal Sphere model yields H0 = 63 +7/-3 km s-1 Mpc-1 (68% confidence level). More complex lens models using a composite de Vaucouleurs plus NFW galaxy mass profile show twisting of the mass isocontours in the lensing galaxy, as do the non-parametric models. As all models also require a significant external shear, this suggests that the lens is a member of the group of galaxies seen in field of view of WFI J2033-4723.Comment: 14 pages, 12 figures, published in A&

    The MH1 domain of Smad3 interacts with Pax6 and represses autoregulation of the Pax6 P1 promoter

    Get PDF
    Pax6 transcription is under the control of two main promoters (P0 and P1), and these are autoregulated by Pax6. Additionally, Pax6 expression is under the control of the TGFĪ² superfamily, although the precise mechanisms of such regulation are not understood. The effect of TGFĪ² on Pax6 expression was studied in the FHL124 lens epithelial cell line and was found to cause up to a 50% reduction in Pax6 mRNA levels within 24ā€‰h. Analysis of luciferase reporters showed that Pax6 autoregulation of the P1 promoter, and its induction of a synthetic promoter encoding six paired domain-binding sites, were significantly repressed by both an activated TGFĪ² receptor and TGFĪ² ligand stimulation. Subsequently, a novel Pax6 binding site in P1 was shown to be necessary for autoregulation, indicating a direct influence of Pax6 protein on P1. In transfected cells, and endogenously in FHL124 cells, Pax6 co-immunoprecipitated with Smad3 following TGFĪ² receptor activation, while in GST pull-down experiments, the MH1 domain of Smad3 was observed binding the RED sub-domain of the Pax6 paired domain. Finally, in DNA adsorption assays, activated Smad3 inhibited Pax6 from binding the consensus paired domain recognition sequence. We hypothesize that the Pax6 autoregulatory loop is targeted for repression by the TGFĪ²/Smad pathway, and conclude that this involves diminished paired domain DNA-binding function resulting from a ligand-dependant interaction between Pax6 and Smad3

    Multi-wavelength observations of afterglow of GRB 080319B and the modeling constraints

    Get PDF
    We present observations of the afterglow of GRB 080319B at optical, mm and radio frequencies from a few hours to 67 days after the burst. Present observations along with other published multi-wavelength data have been used to study the light-curves and spectral energy distributions of the burst afterglow. The nature of this brightest cosmic explosion has been explored based on the observed properties and it's comparison with the afterglow models. Our results show that the observed features of the afterglow fits equally good with the Inter Stellar Matter and the Stellar Wind density profiles of the circum-burst medium. In case of both density profiles, location of the maximum synchrotron frequency Ī½m\nu_m is below optical and the value of cooling break frequency Ī½c\nu_c is below Xāˆ’X-rays, āˆ¼104\sim 10^{4}s after the burst. Also, the derived value of the Lorentz factor at the time of naked eye brightness is āˆ¼300\sim 300 with the corresponding blast wave size of āˆ¼1018\sim 10^{18} cm. The numerical fit to the multi-wavelength afterglow data constraints the values of physical parameters and the emission mechanism of the burst.Comment: 8 Pages, 3 Figures, Accepted for publication to Astronomy and Astrophysics on 02/04/200
    • ā€¦
    corecore