1,854 research outputs found
Recommended from our members
Molecular modelling studies of binding of DACD derivatives into G-Quadruplex DNA: comparison of force field and quantum polarized ligand docking methods
The DNA G-qadruplexes are one of the targets being actively explored for anti-cancer therapy by inhibiting them through small molecules. This computational study was conducted to predict the binding strengths and orientations of a set of novel dimethyl-amino-ethyl-acridine (DACA) analogues that are designed and synthesized in our laboratory, but did not diffract in Synchrotron light.Thecrystal structure of DNA G-Quadruplex(TGGGGT)4(PDB: 1O0K) was used as target for their binding properties in our studies.We used both the force field (FF) and QM/MM derived atomic charge schemes simultaneously for comparing the predictions of drug binding modes and their energetics. This study evaluates the comparative performance of fixed point charge based Glide XP docking and the quantum polarized ligand docking schemes. These results will provide insights on the effects of including or ignoring the drug-receptor interfacial polarization events in molecular docking simulations, which in turn, will aid the rational selection of computational methods at different levels of theory in future drug design programs. Plenty of molecular modelling tools and methods currently exist for modelling drug-receptor or protein-protein, or DNA-protein interactionssat different levels of complexities.Yet, the capasity of such tools to describevarious physico-chemical propertiesmore accuratelyis the next step ahead in currentresearch.Especially, the usage of most accurate methods in quantum mechanics(QM) is severely restricted by theirtedious nature. Though the usage of massively parallel super computing environments resulted in a tremendous improvement in molecular mechanics (MM) calculations like molecular dynamics,they are still capable of dealing with only a couple of tens to hundreds of atoms for QM methods. One such efficient strategy that utilizes thepowers of both MM and QM are the QM/MM hybrid methods. Lately, attempts have been directed towards the goal of deploying several different QM methods for betterment of force field based simulations, but with practical restrictions in place. One of such methods utilizes the inclusion of charge polarization events at the drug-receptor interface, that is not explicitly present in the MM FF
Recommended from our members
Conformational modulation of sequence recognition in synthetic macromolecules
The different triplet sequences in high molecular weight aromatic copolyimides comprising pyromellitimide units ("I") flanked by either ether-ketone ("K") or ether-sulfone residues ("S") show different binding strengths for pyrene-based tweezer-molecules. Such molecules bind primarily to the diimide unit through complementary π-π-stacking and hydrogen bonding. However, as shown by the magnitudes of 1H NMR complexation shifts and tweezer-polymer binding constants, the triplet "SIS" binds tweezer-molecules more strongly than "KIS" which in turn bind such molecules more strongly than "KIK". Computational models for tweezer-polymer binding, together with single-crystal X-ray analyses of tweezer-complexes with macrocyclic ether-imides, reveal that the variations in binding strength between the different triplet sequences arise from the different conformational preferences of aromatic rings at diarylketone and diarylsulfone linkages. These preferences determine whether or not chain-folding and secondary π−π-stacking occurs between the arms of the tweezermolecule and the 4,4'-biphenylene units which flank the central diimide residue
Recommended from our members
The structural effect of Methyl substitution on the binding of Polypyridyl Ru-dppz Complexes to DNA
ABSTRACT: Polypyridyl ruthenium complexes have been intensively studied and possess photophysical properties which are both interesting and useful. They can act as probes for DNA, with a substantial enhancement in emission when bound, and can induce DNA damage upon photoirradiation and therefore, the synthesis and characterization of DNA binding of new complexes is an area of intense research activity. Whilst knowledge of how the binding of derivatives compares to the parent compound is highly desirable, this information can be difficult to obtain. Here we report the synthesis of three new methylated complexes, [Ru(TAP)2(dppz-10-Me).2Cl, [Ru(TAP)2(dppz-10,12-Me2)].2Cl and [Ru(TAP)2(dppz-11-Me)].2Cl, and examine the consequences for DNA binding through the use of atomic resolution X-ray crystallography. We find that the methyl groups are located in discrete positions with a complete directional preference. This may help to explain the quenching behavior which is found in solution for analogous [Ru(phen)2(dppz)]2+ derivatives
Zonal shear and super-rotation in a magnetized spherical Couette flow experiment
We present measurements performed in a spherical shell filled with liquid
sodium, where a 74 mm-radius inner sphere is rotated while a 210 mm-radius
outer sphere is at rest. The inner sphere holds a dipolar magnetic field and
acts as a magnetic propeller when rotated. In this experimental set-up called
DTS, direct measurements of the velocity are performed by ultrasonic Doppler
velocimetry. Differences in electric potential and the induced magnetic field
are also measured to characterize the magnetohydrodynamic flow. Rotation
frequencies of the inner sphere are varied between -30 Hz and +30 Hz, the
magnetic Reynolds number based on measured sodium velocities and on the shell
radius reaching to about 33. We have investigated the mean axisymmetric part of
the flow, which consists of differential rotation. Strong super-rotation of the
fluid with respect to the rotating inner sphere is directly measured. It is
found that the organization of the mean flow does not change much throughout
the entire range of parameters covered by our experiment. The direct
measurements of zonal velocity give a nice illustration of Ferraro's law of
isorotation in the vicinity of the inner sphere where magnetic forces dominate
inertial ones. The transition from a Ferraro regime in the interior to a
geostrophic regime, where inertial forces predominate, in the outer regions has
been well documented. It takes place where the local Elsasser number is about
1. A quantitative agreement with non-linear numerical simulations is obtained
when keeping the same Elsasser number. The experiments also reveal a region
that violates Ferraro's law just above the inner sphere.Comment: Phys Rev E, in pres
Recommended from our members
Delta chirality ruthenium ‘light-switch’ complexes can bind in the minor groove of DNA with five different binding modes
[Ru(phen)2(dppz)]2+ has been studied since the 1990s due to its “light-switch” properties. It can be used as a luminescent DNA probe, with emission switched on through DNA binding. The luminescence observed is dependent on the solvent accessibility of the pyrazine nitrogen atoms, and therefore is sensitive to changes in both binding site of the cation and chromophore orientation. The compound is also chiral, and there are distinct differences between the enantiomers in terms of the emission behaviour when bound to a variety of DNA sequences. Whilst a number of binary DNA-complex X-ray crystal structures is available, most include the Λ enantiomer, and there is very little structural information about binding of the Δ enantiomer. Here we present the first X-ray crystal structure of a Δ enantiomer bound to well-matched DNA, in the absence of the other, Λ, enantiomer. We show how the binding site observed here can be related to a more general pattern of motifs in the crystallographic literature and propose that the Δ enantiomer can bind with five different binding modes, offering a new hypothesis for the interpretation of solution data
Experimental study of super-rotation in a magnetostrophic spherical Couette flow
We report measurements of electric potentials at the surface of a spherical
container of liquid sodium in which a magnetized inner core is differentially
rotating. The azimuthal angular velocities inferred from these potentials
reveal a strong super-rotation of the liquid sodium in the equatorial region,
for small differential rotation. Super-rotation was observed in numerical
simulations by Dormy et al. [1]. We find that the latitudinal variation of the
electric potentials in our experiments differs markedly from the predictions of
a similar numerical model, suggesting that some of the assumptions used in the
model - steadiness, equatorial symmetry, and linear treatment for the evolution
of both the magnetic and velocity fields - are violated in the experiments. In
addition, radial velocity measurements, using ultrasonic Doppler velocimetry,
provide evidence of oscillatory motion near the outer sphere at low latitude:
it is viewed as the signature of an instability of the super-rotating region
Recommended from our members
Selective and highly efficient dye scavenging by a pH-responsive molecular hydrogelator
A structurally simple low molecular weight hydrogelator derived from isophthalic acid forms robust pH-responsive hydrogels capable of highly efficient and selective dye adsorption
The Organization of Working Memory Networks is Shaped by Early Sensory Experience
Early deafness results in crossmodal reorganization of the superior temporal cortex (STC). Here, we investigated the effect of deafness on cognitive processing. Specifically, we studied the reorganization, due to deafness and sign language (SL) knowledge, of linguistic and nonlinguistic visual working memory (WM). We conducted an fMRI experiment in groups that differed in their hearing status and SL knowledge: deaf native signers, and hearing native signers, hearing nonsigners. Participants performed a 2-back WM task and a control task. Stimuli were signs from British Sign Language (BSL) or moving nonsense objects in the form of point-light displays. We found characteristic WM activations in fronto-parietal regions in all groups. However, deaf participants also recruited bilateral posterior STC during the WM task, independently of the linguistic content of the stimuli, and showed less activation in fronto-parietal regions. Resting-state connectivity analysis showed increased connectivity between frontal regions and STC in deaf compared to hearing individuals. WM for signs did not elicit differential activations, suggesting that SL WM does not rely on modality-specific linguistic processing. These findings suggest that WM networks are reorganized due to early deafness, and that the organization of cognitive networks is shaped by the nature of the sensory inputs available during development
- …
