1,854 research outputs found

    Zonal shear and super-rotation in a magnetized spherical Couette flow experiment

    Get PDF
    We present measurements performed in a spherical shell filled with liquid sodium, where a 74 mm-radius inner sphere is rotated while a 210 mm-radius outer sphere is at rest. The inner sphere holds a dipolar magnetic field and acts as a magnetic propeller when rotated. In this experimental set-up called DTS, direct measurements of the velocity are performed by ultrasonic Doppler velocimetry. Differences in electric potential and the induced magnetic field are also measured to characterize the magnetohydrodynamic flow. Rotation frequencies of the inner sphere are varied between -30 Hz and +30 Hz, the magnetic Reynolds number based on measured sodium velocities and on the shell radius reaching to about 33. We have investigated the mean axisymmetric part of the flow, which consists of differential rotation. Strong super-rotation of the fluid with respect to the rotating inner sphere is directly measured. It is found that the organization of the mean flow does not change much throughout the entire range of parameters covered by our experiment. The direct measurements of zonal velocity give a nice illustration of Ferraro's law of isorotation in the vicinity of the inner sphere where magnetic forces dominate inertial ones. The transition from a Ferraro regime in the interior to a geostrophic regime, where inertial forces predominate, in the outer regions has been well documented. It takes place where the local Elsasser number is about 1. A quantitative agreement with non-linear numerical simulations is obtained when keeping the same Elsasser number. The experiments also reveal a region that violates Ferraro's law just above the inner sphere.Comment: Phys Rev E, in pres

    Experimental study of super-rotation in a magnetostrophic spherical Couette flow

    Get PDF
    We report measurements of electric potentials at the surface of a spherical container of liquid sodium in which a magnetized inner core is differentially rotating. The azimuthal angular velocities inferred from these potentials reveal a strong super-rotation of the liquid sodium in the equatorial region, for small differential rotation. Super-rotation was observed in numerical simulations by Dormy et al. [1]. We find that the latitudinal variation of the electric potentials in our experiments differs markedly from the predictions of a similar numerical model, suggesting that some of the assumptions used in the model - steadiness, equatorial symmetry, and linear treatment for the evolution of both the magnetic and velocity fields - are violated in the experiments. In addition, radial velocity measurements, using ultrasonic Doppler velocimetry, provide evidence of oscillatory motion near the outer sphere at low latitude: it is viewed as the signature of an instability of the super-rotating region

    The Organization of Working Memory Networks is Shaped by Early Sensory Experience

    Get PDF
    Early deafness results in crossmodal reorganization of the superior temporal cortex (STC). Here, we investigated the effect of deafness on cognitive processing. Specifically, we studied the reorganization, due to deafness and sign language (SL) knowledge, of linguistic and nonlinguistic visual working memory (WM). We conducted an fMRI experiment in groups that differed in their hearing status and SL knowledge: deaf native signers, and hearing native signers, hearing nonsigners. Participants performed a 2-back WM task and a control task. Stimuli were signs from British Sign Language (BSL) or moving nonsense objects in the form of point-light displays. We found characteristic WM activations in fronto-parietal regions in all groups. However, deaf participants also recruited bilateral posterior STC during the WM task, independently of the linguistic content of the stimuli, and showed less activation in fronto-parietal regions. Resting-state connectivity analysis showed increased connectivity between frontal regions and STC in deaf compared to hearing individuals. WM for signs did not elicit differential activations, suggesting that SL WM does not rely on modality-specific linguistic processing. These findings suggest that WM networks are reorganized due to early deafness, and that the organization of cognitive networks is shaped by the nature of the sensory inputs available during development
    corecore