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Strategic Real Option and Flexibility Analysis for Nuclear Power Plants Considering  

Uncertainty in Electricity Demand and Public Acceptance 

Abstract 

Nuclear power is an important energy source especially in consideration of CO2 emissions and global 

warming. Deploying nuclear power plants, however, may be challenging when uncertainty in long-term 

electricity demand and more importantly public acceptance are considered. This is true especially for 

emerging economies (e.g., India, China) concerned with reducing their carbon footprint in the context 

of growing economic development, while accommodating a growing population and significantly 

changing demographics, as well as recent events that may affect the public’s perception of nuclear 

technology. In the aftermath of the Fukushima Daiichi disaster, public acceptance has come to play a 

central role in continued operations and deployment of new nuclear power systems worldwide. In 

countries seeing important long-term demographic changes, it may be difficult to determine the future 

capacity needed, when and where to deploy it over time, and in the most economic manner. Existing 

studies on capacity deployment typically do not consider such uncertainty drivers in long-term capacity 

deployment analyses (e.g., 40+ years). To address these issues, this paper introduces a novel approach 

to nuclear power systems design and capacity deployment under uncertainty that exploits the idea of 

strategic flexibility and managerial decision rules. The approach enables dealing more pro-actively with 

uncertainty and helps identify the most economic deployment paths for new nuclear capacity 

deployment over multiple sites. One novelty of the study lies in the explicit recognition of public 

acceptance as an important uncertainty driver affecting economic performance, along with long-term 

electricity demand. Another novelty is in how the concept of flexibility is exploited to deal with 

uncertainty and improve expected lifecycle performance (e.g. cost). New design and deployment 

strategies are developed and analyzed through a multistage stochastic programming framework where 

decision rules are represented as non-anticipative constraints. This approach provides a new way to 

devise and analyze adaptation strategies in view of long-term uncertainty fluctuations that is more 

intuitive and readily usable by system operators than typical solutions obtained from standard real 

options analysis techniques, which are typically used to analyze flexibility in large-scale, irreversible 



investment projects. The study considers three flexibility strategies subject to uncertainty in electricity 

demand and public acceptance: 1) phasing (or staging) capacity deployment over time and space, 2) on-

site capacity expansion, and 3) life extension. Numerical analysis shows that flexible designs perform 

better than rigid optimal design deployment strategies, and the most flexible design combining the 

above strategies outperforms both more rigid and less flexible design alternatives. It is also 

demonstrated that a flexible design benefits from the strategies of phasing and capacity expansion most 

significantly across all three strategies studied. The results provide useful insights for policy and 

decision-making in countries that are considering new nuclear facility deployment, in light of ongoing 

challenges surrounding new nuclear builds worldwide. 

Keywords: nuclear power plant, flexibility in engineering design, real options analysis, decision rules, 

public acceptance, stochastic programming 

1 Introduction 

The global electricity demand has rapidly increased in recent decades, from 13,174 TWh in 2000 to 

20,301 TWh (54% growth) in 2014 (Enerdata, 2015). Many countries, especially emerging economies 

like India and China, are facing increasing demand due to rapidly growing populations, while trying to 

reduce their carbon footprint and greenhouse gas emissions (NDRC, 2015; Plucinska, 2015). A 

significant proportion of the energy portfolio in those countries still relies on traditional thermal power 

plants generating electricity from fossil fuels, which contribute significantly to CO2 emissions (EIA, 

2014, 2015).  

In the hope of reducing global warming, renewable or green energy sources with little or zero CO2 

emissions like nuclear power technology have received increasing attention in recent years (EIA, 2014, 

2015). Compared to expanding renewable energy sources like solar or wind power, nuclear power 

provides a stable baseload because it does not rely on any given environmental conditions to generate 

power (i.e., unlike wind farms and PV systems). Furthermore as a generator with high fixed costs and 

very low marginal costs, baseload generation is typically favored even if the load-following operation 

is technically possible (Pouret et al., 2009).  



In the aftermath of the Fukushima Daiichi disaster, public acceptance has come to play a central role in 

many countries regarding the continued operations and deployment of new nuclear power systems. 

Governments, politicians, and the public show a higher degree of concern regarding the safety of nuclear 

power technology. For example, safety issues concerning the large amounts of energy stored in the 

nuclear reactor core, or the need to cool it down after shutdown are among chief technical concerns. 

More importantly for the public are the risks associated with radiation poisoning that may occur after a 

large-scale nuclear incident. 

Noting those ongoing concerns around long-term waste management, nuclear power is still a significant 

energy source in many developed countries (e.g., the United Kingdom, France the United States, Russia, 

and South Korea). On the other hand, emerging economies considering nuclear power may face pressure 

and opposition internally from their own population, from neighboring countries, or even from other 

national governments, in relation to the safety of their nuclear technology. 

There are much uncertainty and risks associated with deploying nuclear power plants from an economic 

standpoint (Kessides, 2010). This is true, especially when considering upcoming demographic 

challenges for emerging countries, as well as the new policy-related challenges associated with nuclear 

power in the public eye. Uncertainty in growing electricity demand, as well as public acceptance of 

nuclear technology, may affect significantly the economic performance and costs of such systems, and 

ultimately even the possibility of continuing existing operations, or deploying new capacity. Social 

factors that may affect the circumstances for making decisions are public acceptance of nuclear 

technology, which itself influences government support. Public acceptance is “essential for any activity 

that affects large sectors of a nation” (Golay, 2001).  

To deal with uncertainty in demand and public acceptance, this paper introduces the idea of flexibility 

in engineering system design as a way to deal pro-actively with medium to long-term changes in 

demand and social acceptance of nuclear power technology. Flexibility is akin to the notion of a real 

option, which provides system planners and operators “the right, but not the obligation, to change the 

system deployment and operations as uncertainty unfolds” (Dixit & Pindyck, 1994; Trigeorgis, 1996). 



The idea of flexibility stems from the recognition that uncertainty affects significantly the expected 

lifecycle performance of a system. It focuses on finding systems architecture, design, and capacity 

deployment strategies that improve the system’s expected performance by pro-actively adapting to 

changing conditions. Flexibility strives, on the one hand, to reduce the impact from downside conditions 

(e.g., lower demand and/or social acceptance than anticipated), and to provide contingencies to 

capitalize on upside opportunities (e.g., higher and/or better social acceptance than expected). The net 

effect is typically to improve the expected economic performance of engineering systems over their life 

cycle, as demonstrated in many case studies (de Neufville and Scholtes (2011)). 

The literature on real options analysis (ROA) (e.g., Cox et al. (1979); Dixit and Pindyck (1994); 

Trigeorgis (1996)) has evolved over recent years to provide better tools to enable system architects, 

designers, and planners to analyze flexibility in an applied setting (Cardin, 2014). This is because 

standard ROA techniques focus on quantifying the economic value of flexibility, but many assumptions 

are not well suited for an engineering driven and applied setting. For example, the path independence 

assumptions that is crucial to recombining binomial lattices, while realistic for valuing financial options, 

is not appropriate in an applied setting. An up-down movement in the main stochastic driver (e.g. 

demand, social acceptance) would not lead to the same decision sequence in terms of deploying power 

system infrastructures than a down-up sequence, and therefore would not result in the same economic 

value and performance for the system. In addition, there is no efficient and complete market of tradable 

assets to replicate the cash flows of such systems, making the risk neutrality and arbitrage-enforced 

pricing assumptions critical to standard ROA not applicable. Another limitation is that it may be 

difficult to determine the optimal timing to exercise the flexibility. Decision-makers need to determine 

their position in the lattice by fitting historical data, projecting the evolution of uncertainty over the next 

few time periods, and applying a backward induction process to determine the optimal exercise policy 

(Bellman, 1952). When multiple facilities, flexibility strategies, or uncertainty sources are considered 

simultaneously, this approach requires the use of multinomial lattices (i.e. using multiple interwoven 

binomial lattices) (Kamrad & Ritchken, 1991), which make the analysis more difficult from a 



computational standpoint, and also even more challenging in terms of determining the position and 

optimal exercise policy for decision-makers. 

To deal with these issues, a novel approach based on decision rules and stochastic programming has 

been proposed to analyze flexibility in engineering systems design and management (Cardin et al., 

2016). The authors show that this approach leads to similar valuation outcomes as standard ROA 

techniques, but is better suited to the analysis of multiple flexibility strategies and uncertainty sources. 

The decision rule approach aims to emulate the decision-making process, and therefore it is more 

intuitive to guide decision-makers and system operators on the optimal timing for exercising the 

flexibilities (see Section 2 for further details on the approach). On the other hand, this approach has not 

been extended to the analysis of infrastructure systems, when multiple facilities, flexibility strategies 

(or real options) and uncertainty sources are considered simultaneously. 

To address these issues, the paper introduces a novel approach combining decision rules and stochastic 

programming to analyze flexibility in nuclear infrastructure systems, and to determine the best capacity 

deployment strategies accounting for uncertainty in future demand, as well as social acceptance of 

nuclear power. More specifically, this paper investigates the question of how to exploit the concept of 

flexibility to design and site nuclear power plants in countries that are considering additional 

deployment of nuclear power capacity, considering explicitly uncertainty in electricity demand and 

social acceptance for the technology. Multiple electricity demands are sampled based on historical 

information using Monte-Carlo simulation. The simulated samples are used both for the optimization 

analysis, and for an out-of-sample study in the numerical analysis. Social acceptance is defined here as 

the public’s intention to support more/less capacity deployment of new nuclear power facilities. As 

there is currently no widely accepted approach to measure this socio-technical factor, the cumulative 

International Nuclear Event Scale (INES) is used as proxy in this paper to analyze and model 

quantitatively social acceptance. The INES is widely accepted in the nuclear sector as a measurement 

of the severity of nuclear incidents and accidents. The main contribution is a novel analysis based on 

decision rules to analyze the strategic power of flexibility in nuclear capacity deployment over multiple 

sites, while considering explicitly the recent reality of social acceptance, along with the more traditional 



considerations of electricity demand associated with demographic growth in developing countries. In 

doing so, the analysis introduces new design alternatives exploiting strategic-level flexibility, based on 

multi-stage stochastic programming and the concept of managerial decision rules, and demonstrates 

how they improve expected lifecycle performance, as compared to more rigid (although stochastically 

optimal) strategies. These can provide useful insights to decision-makers and system planners 

concerned with new nuclear capacity deployment. 

This paper is organized as follows. Section 2 reviews the related work and provides motivation for the 

research gaps addressed in this study, as well as potential contributions. Section 3 presents the details 

of the approach in terms of mathematical formulations. A numerical study is reported in Section 4 in 

which four design alternatives are analyzed and compared. Concluding remarks, limitations, and 

possible directions for further research are presented in Section 5. 

2 Related work 

2.1 Flexibility/Real options analysis 

Flexibility in engineering systems design – also referred as real options – provides the “right, but not 

the obligation, to change a system easily in the face of uncertainty” (Trigeorgis, 1996). Saleh et al. 

(2009) summarized the research efforts on this multi-disciplinary concept of flexibility, while (Cardin, 

2014) introduced a five-phase systematic design framework and taxonomy for enabling flexibility in 

design and management of complex systems (i.e. baseline design, uncertainty recognition, concept 

generation, design space exploration, process management). In each such phase, procedures exist to 

help system designers and architects to enable flexibility (or real options) in engineering systems. 

Specifically, real options “in” projects focus on strategies for changing the physical design of 

engineering systems, such as expanding/reducing capacity, deploying capacity in phases over time, etc. 

Real options “on” projects, on the other hand, focus on high-level financial/managerial decisions made 

about technical issues like deferring investment until favorable market conditions arise and abandoning 

current projects. Compared to the latter, real options “in” projects require a deep understanding of 



technology and systems – or possibly changes – to enable flexibility in the designs (Wang & de 

Neufville, 2005).  

The benefits of incorporating flexibility may help limit system exposure to downside risks, while 

enabling a system to deal pro-actively with uncertainty to benefit from upside opportunities. For 

example, a planner may embed flexibility so s/he can decide whether or not to expand easily the capacity 

of a waste-to-energy (WTE) power plant in the future, depending on prevailing waste generation 

patterns in a city (Cardin & Hu, 2016; Hu & Cardin, 2015). If a waste generation is stable and can be 

covered by the current capacity, there is no need to expand the capacity at that time. Once the amount 

of waste generated in the city is greater than the capacity for several consecutive years, the planner may 

decide to expand the plant capacity to meet waste generation growth based on a heuristic i.e., a decision 

rule. This approach to decision-making is in line with the view that decision-makers may prefer to rely 

on heuristic rules to achieve desired levels of performance when operating under complex and uncertain 

environments (Simon, 1972). Flexibility is deemed as an emerging concept to improve the expected 

economic performance of engineering systems, as shown in many studies and industry sectors like 

aerospace, automotive, manufacturing, real estate, oil and gas, and transportation (Alp & Tan, 2008; 

Chen & Yuan, 1999; de Weck et al., 2004; Jain et al., 2013a; Jiao, 2012; Koh et al., 2013; Luo, 2015; 

Nilchiani & Hastings, 2007; Ross et al., 2008; Subrahmanian et al., 2015; Suh et al., 2007).   

2.2 Capacity Deployment of Nuclear Facilities 

Deploying nuclear power facilities over time and space is a more specific application of the more 

general capacity deployment problem already addressed in the literature. In such problem, there are 

typically several uncertainty drivers that may affect the system’s key performance indicators (KPIs). 

Despite some analytical shortcomings, ROA has been considered a valuable approach for economic 

analysis, and as a way to recognize the additional value that stems from pro-active actions in dealing 

with uncertainty. Typically, a deferral option can be used to model the capacity deployment of nuclear 

power plants, aiming to optimize total profits by deferring investments until favorable market conditions 

arise. For instance, Louberge et al. (2002) applied a real options model to study an optimal stopping 

problem regarding deep geological disposal of nuclear waste. Rothwell (2006) and Abdelhamid et al. 



(2009) also analyzed this deferral option in the context of nuclear technology. Besides, other studies 

have focused on valuing alternative reactor technologies that could help improving the economic 

performance of a nuclear system. Cardin et al. (2012) considered a first-of-a-kind commercial thorium-

fuelled Accelerator-Driven Subcritical Reactor as a safer alternative for nuclear power generation. Jain 

et al. (2013b) focused on small- and medium-sized reactors (SMRs) and investigated the economic 

impact of modular construction of such reactors. See, for example, Jain et al. (2014); Locatelli et al. 

(2015); Siddiqui and Fleten (2010); Zhu (2012), for other applications.   

2.3 Social acceptance of nuclear technology 

Grimston et al. (2014) introduced six factors that can affect decision-making regarding the siting of 

nuclear power plants, where the social factors are recognized as public support for the maintenance of 

existing nuclear power plants and establishing more nuclear power plants nationwide. Abrecht et al. 

(1977) discussed several ethical issues that affect public support. This support, or acceptance, is regional 

because the factors influencing it are different across the world, such as national economic conditions 

(e.g., GDP), recognition of current nuclear technology, etc.  

Nuclear events, wherever they occur in the world, may significantly reduce public support. The 

Chernobyl disaster in 1986 in Ukraine was the worst nuclear accident in terms of costs and casualties. 

This catastrophe ultimately cost 18 billion rubles and affected adversely over 500,000 workers, with 31 

people dying during the accident itself. After Chernobyl, the development of nuclear power plants 

slowed down significantly across the globe until 2005. In 2011, the disaster at the Fukushima-Daiichi 

plant in Japan due to a tsunami resulted in the nuclear meltdown of three reactors (Wakatsuki, 2014). 

Estimates of economic losses range from USD $250 billion to $650 billion (Lavelle, 2012). Influenced 

by the Fukushima accident, developed economies like Germany immediately closed its eight oldest 

nuclear plants and plans to gradually shut down the remaining ones until 2025, while Switzerland made 

similar decisions (Joskow & Parsons, 2012). Unlike Germany and Switzerland, some countries were 

not so constrained by social acceptance issues (Kidd, 2013). One such country is the United Kingdom, 

where the main policy response was targeted on existing facilities and was actually driven by European 

Union post-Fukushima requirements, including a set of nuclear “stress tests”, which included 



considerations of beyond-design-basis accidents. The South Korean government continued to operate 

its twenty existing nuclear power plants and plans to establish more by 2015 (Song et al., 2013). 

Developing countries like China and India delayed their projects briefly but restarted then shortly 

afterward. Although such project delays are not considered as a social acceptance motivated policy 

response in our study, China is clearly social acceptance sensitive, and so is India. They too faced 

significant public reluctance, which was a significant issue in the decision-making process (Mishra, 

2012).  

Following the Chernobyl accident in 1986, the International Atomic Energy Agency (IAEA) was keen 

to enable prompt communications of safety information to the public, introducing a logarithmic index 

called the International Nuclear Events Scale (INES) in 1990, similar to the Richter magnitude scale 

for earthquakes. There are eight levels on the scale, seven of which are non-zero levels. Level 7 is the 

most severe level (i.e., major accident) and is where the Chernobyl and the Fukushima disasters were 

categorized. Examples of the other levels include the 1979 Three Mile Island accident near Harrisburg, 

Pennsylvania, in the United States (level 5: accident with wider consequences), and the 1999 Tokaimura 

nuclear accident in Japan (level 4: accident with local consequences). INES has been used as a proxy 

for assessing the perceived risks of nuclear power plants. Taebi and van de Poel (2015) discussed some 

important considerations, as well as social-technical challenges, regarding nuclear energy in the post-

Fukushima era. Huang et al. (2013) and He et al. (2013) studied the impact of the Fukushima accident 

on the Chinese public in terms of risk perceptions and trust in government authorities, respectively. 

This study proposes to use and model the INES scale as a proxy for public acceptance of nuclear 

technology, as it is an important uncertainty driver potentially impacting future expected economic 

performance of nuclear capacity deployment. 

2.4 Research gaps and contributions 

Past studies on nuclear power systems considering the concept of flexibility focused more on real 

options “on” projects, as opposed to real options “in” projects, and few studies considered the effect of 

social acceptance in developing a decision support system for deploying nuclear system infrastructure. 

Among chief concerns, studies relying on standard ROA approaches may cause challenges for planners 



and policy-makers trying to determine the optimal exercise policy if multiple flexibility strategies, 

uncertainty drivers, and flexible infrastructures are analyzed in a combined model. 

In light of the above, this article introduces a novel approach based on decision rules and stochastic 

programming to analyze flexibility in nuclear infrastructure systems. The analysis helps determine the 

best capacity deployment strategies accounting for uncertainty in future demand, as well as social 

acceptance of nuclear power. The analysis recognizes the importance of social acceptance as an 

uncertainty driver, in addition to growing electricity demand, with scenarios developed and modeled 

under the sample average approximation method based on a realistic scheme already used worldwide 

for policy-making (i.e., INES). The form of the solutions obtained under the proposed approach can be 

used easily by decisions-makers, since they depend on the realizations of such uncertainty driver, as 

well as realized electricity demand, based on the approach for single-site analysis developed by Cardin 

et al. (2016). Building upon that knowledge, the study uncovers new alternative solutions for nuclear 

capacity planning and operations, incorporating: 1) strategic-level flexibility (e.g., capacity expansion) 

to deploy and manage the capacity of nuclear power plants over time over multiple sites, and 2) decision 

rules with optimal parameters (e.g., unit capacity to be expanded if needed) for exercising the relevant 

flexibility strategies in real-world activities. Such strategies might prove useful for emerging economies 

that are considering nuclear power as part of their future energy portfolio. 

3 The Multi-stage Stochastic Model 

In this section, the generic form of the mathematical model is introduced. This generic model is a multi-

stage stochastic programming model based on sample average approximation. The more specific and 

detailed formulation of the optimization problem (i.e. objective function, decision variables, parameters) 

is provided in the Supplementary Material, and described in Section 4. The model is implemented and 

solved using a commercial and professional optimization software (i.e., AIMMS). There multiple 

scenarios considered in the optimization analysis are sampled by Monte-Carlo simulation with a given 

distribution information for electricity demand derived from historical data, and based on modeling of 

social acceptance. The optimization results are described in Section 4.1. In section 4.2, more samples 



are generated and an out-of-sample analysis is conducted in the numerical experiment, to determine 

how well the solutions behave under a set of scenarios that were not used for the optimization analysis. 

A sensitivity analysis follows in Section 4.3 to account for imprecisions in salient parameter 

assumptions. Section 4.4 discusses the behavior of the alternative solutions obtained. 

More specifically, the mathematical model derived from the generic formulation enables the analysis 

of three strategic-level real options (or flexibility strategies FS) for the design of flexible nuclear power 

systems. Firstly, the model accounts for flexible capacity expansion at any strategic period (FS-A). 

Once a plant is deployed, the capacity of this plant can be increased (or uprated) within its useful life 

(typically 40-60 years) when needed and when external circumstances make it allowable. This flexible 

expansion benefits from special attention in terms of infrastructure architecture and design (e.g., 

designing for smaller capacity first, and carefully planning for expansion in the future by installing new 

nuclear reactor, for instance). The capacity of a nuclear power plant is related to its ability to generate 

a given amount of electricity. Secondly, flexible phased deployment (FS-B) of plant capacity is 

analyzed, allowing the deployment of plants over time and space when needed and when external 

circumstances (e.g., social acceptance) are favorable. Social acceptance is a regional or country-wide 

factor of recognition that reflects public attitudes towards nuclear technology. Social acceptable can 

thus influence decision-making regarding capacity deployment of nuclear power plants. The level of 

acceptance can be diverse for people living in the same country, such as China and India. This study 

focuses on small- to medium-sized regions or provinces where people may have similar acceptance of 

nuclear technology. Thus, it is assumed in this study that social acceptance is identical across candidate 

sites considered in the analysis. Thirdly, the flexible design enables life extension (FS-C) for a plant 

when it is supposed to be closed (i.e., the useful life time is up), depending on the cumulative INES 

observed at that moment (i.e. a proxy for social acceptance). This cumulative INES is not a simple 

accumulation of INES at each period since the beginning of the study life. Instead, it is a rolling 

cumulative for just a few periods. This is considered because of the limited duration of human memory, 

and the fact that the effects of past nuclear accidents on the collective memory may not last for an 

extensive amount of time. It is safe to assume that past accidents may have impacts on decision making 



regarding deploying nuclear power plants. This cumulative term, therefore, helps represent better the 

historical impact of nuclear events in a reasonable timeframe, as compared to using a single INES index.  

The generic form of the optimization model is described as follows, with further details available in the 

Supplementary Material. Considering a life cycle planning horizon of � periods over which electricity 

demand and social acceptance are random. Index � denotes a candidate site for deploying a new power 

plant, and ���
�  denotes the capacity deployed at site �  at period �  under uncertainty scenario � . To 

simplify the model, it is assumed that geographical locations of candidate sites are given information, 

and that all candidates are suitable for deploying nuclear power plants. Therefore, the number of 

candidate sites is limited because the location requirements are extremely strict. Let cost functions 

∁�
�(��

� , ���)  and ℋ�
�(��

� , ����
� )  represent the basic costs (e.g., fixed costs, reactor costs) and costs 

associated with flexibility strategies (e.g., flexible phased deployment, capacity expansion), 

respectively. Note that ��
� is the total capacity deployed over the system scale. It also should be noted 

that ��
� ∈ ℝ, � = 1,… , �, is the uncertainty (i.e., electricity demand and social acceptance) considered 

in the design and treated as stochastic process.  ��
� is the vector of decision variables chosen at period � 

based on information observed up to now (i.e., �[�]
� ). Equation (1) is the general form of objective 

function that aims at minimizing the expected total costs over the life cycle. ��(. ) are continuous 

functions of interests, and consist of ∁�
�(��

� , ���) and ℋ�
�(��

�, ����
� ).  
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The optimal solution of a �-stage problem is denoted as �������, �[�]�, and it is equal to the sum of costs 

function and the expectation of ���������, �[�]�. Equation (2) holds because of the assumption with 



regards to the sample average approximation, where Ξ is a finite set of {��, … , �!} with corresponding 

probability ∑ $� = 1,!
�%� 	$� ≥ 0. Equation (3) ensures that initial decision making should be consistent 

under different scenarios (i.e., non-anticipative constraints). In Equation (4), ℱ�
� denote the abstract 

form of decision rules that map from each scenario to a solution at period �. 

Other modeling assumptions include the fact that a plant will not be used again if it is closed, and this 

closure is effective immediately. The possible value of the cumulative INES is partitioned into three 

areas – safe, warning, and dead. If the cumulative INES falls into the safe area, the system will be 

operated as usual and all types of decisions will be available. If the cumulative INES falls into the 

warning area, however, the system can still be operated, but no flexibility strategies can be exercised 

until the cumulative INES falls into the safe area again. When the cumulative INES falls into the dead 

area, the whole project will be terminated immediately, and it will not be opened again for the remainder 

of the study life. To simplify the model and analysis, it is assumed that a nuclear power plant will not 

continue to generate electricity after a decision is made to close the plant. Yet to fulfill the contract the 

system will purchase electricity from the market, which imposes as a penalty. The threshold values for 

partitioning these areas are predetermined by experienced professionals, and they may not necessarily 

be the same in different countries. 

4 Numerical Analysis 

The case study focuses on how to site and manage the nuclear power system capacity over the next 40 

years (which is the study life) in a hypothetical region or province of a developing country like China 

or India, considering uncertainty in long-term electricity demand and social acceptance. The purpose of 

the study is to determine: 1) the usefulness of the concept of flexibility in deploying and managing new 

nuclear power capacity and 2) evaluating the value of flexibility based on uncertainty realization. The 

analysis focuses on how to flexibly site nuclear power plants in such developing economy, assuming 

there is a clear governmental wish to further develop and expand nuclear power capacity – as motivated 

in Section 1. The number of candidate sites for the plants is assumed to be six due to the availability in 



the hypothetical region. Most parameters are chosen for demonstration purposes and need to be adapted 

to the realities of a given country and context.  

Four alternative design solutions are analyzed and compared subject to both long-term electricity 

demand and social acceptance uncertainty (see Fig. 1). The first design is termed the “rigid design” or 

deterministic design, and it deploys all resources at once at the beginning of the study life. The rigid 

design deploys capacity in a stochastically optimal manner in light of anticipated scenarios (i.e., 

considering multiple forecasting scenarios in the modeling session). This design captures a robust 

approach to capacity deployment under uncertainty and aims to maximize cost effectiveness 

considering a wide range of uncertainty scenarios. The other three design alternatives are proposed 

based on the concept of flexibility, in which three flexibility strategies are considered. The first strategy 

is flexible capacity expansion (i.e., FS-A), which allows an existing nuclear power plant to install 

additional nuclear reactors if and when needed. More specifically, the expansion strategy will be 

exercised when 1) the demand is not fulfilled for �* = 3 consecutive years, 2) social acceptance falls 

into the safe area (i.e., ,�� ≤ .�), and 3) there is(are) plants that do not reach their upper bound in terms 

of capacity. The second strategy is flexible capacity deployment (i.e., FS-B). It allows the system to 

deploy flexibly new nuclear power plants over time (not necessarily at period � = 0), and over space 

(multiple candidate sites). It is akin to a deferral real option whereby new plants will only be deployed 

if market conditions are favorable. The conditions for exercising the deployment strategy are similar to 

those of the capacity expansion strategy, except that it requires empty sites to install new plants. The 

third strategy is called life extension (i.e., FS-C). This alternative allows an aged power plant to extend 

its lifetime by an additional period, if certain conditions are met. In this study, enabling FS-A may 

require a structural feature regarding the power plant and it thus introduces a cost premium to enable 

the flexibility. For FS-B and FS-C, there is no cost premium for the flexibilities. FS-A and FS-B are 

considered in Flex A design, while FS-C is considered in the Flex B design. As a combination, Flex C 

design takes into account all three flexibility strategies. The rigid and Flex A designs do not incur any 

life extension, while the Flex B-C designs incur a life extension governed by decision rules, and subject 

to social acceptance. All designs have an early shutdown capability if social acceptance is not favorable. 



To have a clear idea of flexible designs, the reader is referred to a table containing all flexibility 

strategies (see Table 5), and the full mathematical model in the Supplementary Material. 

Electricity demand (i.e., /��) is simulated via a Geometric Brownian Motion (GBM) process with a 

particular expected growth rate (0 = 10.11%) and volatility (2 = 3.59%) as shown in Equation (5), 

with values extracted from historical data. 5� is a Wiener process or so-called Brownian motion.  

 ;
t t t t

dS S dt S dWµ σ= +   (5) 

The values for the GBM parameters are obtained from the statistical analysis using real data from 

electricity production in China from 2000 to 2014 (Enerdata, 2015), as can be found in Fig. 2. It provides 

historical information on electricity production in different countries, including China, the United States 

and India. Specifically, the same approach as presented in Jin et al. (2011) is used here, calculating the 

logarithm of the percentage changes for every year (i.e., 6(�) = log(:(�) :(� − 1)⁄ )), where :(�) is 

the electricity production in year �. Since variables :(�) are independent and identical distributed, 6(�) 

is suitably normalized and {6(�)} thus should be approximately behaving as a GBM process (Ross, 

1995). The value of the initial point (i.e., =>) is 5.583 TWh (equivalent to 0.005583 billion MWh), 

which is 0.1% of the total electricity production in China in 2014. This assumption is realistic because 

this province may be underdeveloped and only 10% of local electricity demand in the country is 

currently supplied by nuclear power. Refer to public sources (e.g., IAEA (2016)), nuclear power 

accounted for only 3.03% of the total electricity production in China up to 2015. It is therefore safe to 

assume a goal of 10% of total electricity production from nuclear power plants in the case study, 

according to reports published on the World Nuclear Assocation (2016). Fig. 3 illustrates some 

outcomes of the GBM process generated for the out-of-sample analysis. The costs and generation 

assumptions are adapted from the paper by Steer et al. (2012) and Jin et al. (2011), and are detailed in 

the supplementary material. Several figures are valid as of 2006, and are converted from British pounds 

to US dollars. The variable cost (e.g., operation and maintenance costs, fuel costs) is assumed to increase 

gradually by a given annual growth rate (i.e., 3% for O&M costs and 2% for fuel costs). To simplify 

the assumptions, costs associated with shutting down a unit or plant is not considered in the case study. 



We do not explicitly include this cost because of the modeling complexities involved, such as waste 

management and disposal, which is beyond the scope of the study. 

 

Fig. 1. A flow chart illustrating the decision-making dynamics for all four design alternatives. 

As a significant input parameter, it is assumed that social acceptance is a major concern for the decision-

making authorities, which either reflects the concerns of the population within the country or at an 

international level (e.g. from neighboring countries). For demonstration purposes, the lower bounds for 

the warning and dead areas are assumed to be fairly low at 5 and 7, respectively, meaning that the 

country is relatively conservative in terms of social acceptance. Social acceptance (i.e., ,��) is modeled 

using the cumulative INES, as introduced in Sections 2-3. Since this INES factor is intended to be 



logarithmic according to its definition, it is assumed that this factor is generated through formulas (6) 

and (7). Parameter � denotes the level of this INES factor, and $(�) is the corresponding probability. 

More specifically, the approach firstly samples a value between 0 and 1 based on a uniform distribution. 

This value is then categorized into one of these levels accordingly. For instance, if ? = 2 and the sample 

is 0.85, then it implies that the INES factor of this year is level 2. 

 ( ) ( ) ,  0 {1, 7};i ip i p β −= = …   (6) 

 ( ) 1,  {0, 7};
i
p i i= = …∑   (7) 

 

 

Fig. 2: Historical electricity production from the year 2000 to 2014. 

 

Fig. 3. Demand for electricity throughout plant lifetime over 1,000 scenarios 
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The probability of one level is approximately 1 ?⁄  that of the previous level, i.e., $(�) = �
A
$(� − 1), � =

1,… ,7. Parameter ?  is referred as a magnification factor on the logarithmic INES scale, which is 

nominally assumed as ? = 3.5 in this case study, based on expert discussions. Note that there is no 

confirmed approach to assign a value to this magnification factor. A better and more realistic value of 

? may requires more sophisticated research of the historical data and social impacts, which is out of the 

scope of this study. Different ? values are considered in the sensitivity analysis Section 4.3 to determine 

the impact on the value of flexibility. 

The value of flexibility is assumed to be the difference between the expected total costs of any flexible 

design and the rigid design used as a benchmark, as shown in Equation (8). The expected value of total 

costs can be obtained through the out-of-sample analysis, which will be introduced later. 

 ( ) ( ) ( )( )Flex max 0, Rigid Flex  ;E Value E Total E Total= −             (8) 

Typically, there is a cost premium for enabling flexibility. It is, however, not included in the 

construction costs. The difference in Equation (8) thus indicates the upper bound on the cost premium 

that the decision-makers should be willing to pay to embed flexibility in the nuclear power system. This 

cost may vary depending on the system; location, technology, the need for shared infrastructure to plan 

for capacity expansion, purchase additional land, and other socio-economic conditions that are difficult 

to detail here, and are out of scope. The max condition captures the fact that if flexibility does not create 

positive value (e.g., cost savings), it will not be embedded in the system design – and therefore, the 

lower bound is 0.  

Firstly, all design alternatives were solved to optimality in the optimization procedure. The optimal 

solution(s) then went through an out-of-sample test to verify the robustness of the solution in the face 

of unseen scenarios. After that, a sensitivity analysis was conducted to show how objective values 

evolve when input parameters changed. The computational analysis was run on a desktop PC machine 

with a 3.30 GHz CPU and 8.0 GB of random access memory (RAM). All design alternatives were coded 

in AIMMS 4.2 (AIMMS, 2014) and CPLEX 12.6 was used as the MIP solver. Since the model is 



formulated as a mixed-integer program based on the sample average approximation, the default 

algorithm is used for solving it. This default algorithm for MIP is the standard Branch and Bound (B&B) 

method, which terminates when the relative gap is smaller than or equal to 0.01, or the number of 

iterations reaches an upper bound (e.g., 20 million), or the computation time reaches an upper bound 

(e.g., 10,000 seconds).  

4.1 Uncertainty and flexibility analysis  

Table 1 lists the characteristics of the four design alternatives in terms of the problem size and 

optimization results, while Fig. 4 and Table 2 illustrate the solutions obtained for the four designs. The 

solutions were obtained via a standard Branch and Bound algorithm with given stopping criteria. Note 

that some solutions (e.g., Flex A and C designs) are not the true optimal solutions because the algorithm 

terminated before converging.  However, they are good enough in terms of the quality of the solution, 

and enable a fair comparison between one another (e.g., solution of Flex A is even smaller than that of 

Flex B, while the gap of Flex A is larger). The expected total cost for the Flex C design is 23.42% less 

than for rigid design, considering the best solutions. More specifically, Fig. 4 compares the capacity 

evolution at site 1 (i.e., variable �CD��  as defined in the mathematical model in the Supplementary 

Material, where E = 1) under two sample scenarios, out of the ten scenarios used for optimization. It 

shows, for instance, that the plant at site 1 is closed at period 18 (which is earlier than its lifetime) 

because social acceptance is not favorable in sample scenario 2, as the cumulative INES falls into the 

dead zone at that time. The second column of Table 2 displays the initial deployment plans (i.e., variable 

FCD
� ) for the flexible design alternatives. For Flex A design, 1 unit of capacity (i.e. 600 MWe, see Table 

6 in the Supplementary Material) is equally deployed at sites 3 (i.e., FCD
� = 1 where E = 3 and G = 1) 

and 6 since the beginning, respectively.  For Flex B design, 3 units of capacity are equally deployed at 

each site 1, 2, and 3, while 3 units of capacity are equally deployed at sites 2, 4, and 6 for Flex C design. 

Column 3 shows the threshold (i.e., �*) to determine whether the demand satisfaction is fulfilled or not, 

while columns 4-7 represents the values for decision rule parameters. For Flex A (C) design, if the 

system loses more than �* = 3.3434% (0.0001%) of electricity demand for 3 consecutive years, the 

planner may expand capacity by IJ = 1 (1) unit of capacity at KJ = 2 (3) non-empty sites, or deploy 



IL = 3 (3) units of capacity at KL = 4 (3) empty sites, depending on the feasibility of the expansion. 

Columns 8 and 9 list the threshold values for partitioning the cumulative INES into safe-unsafe areas. 

If the cumulative INES is greater than or equal to the threshold .� = 5 but less than the threshold .M =

6 (i.e., the cumulative INES falls into the warning area), the system can still be operated but no strategic-

level decisions can be implemented. 

Table 1. Characteristics and results for design alternatives 

Alternatives No. of 
constraints 

No. of integer 
variables 

Best LP bound 
($billion) 

Best solution 
($billion) 

Gap 
(%) 

CPLEX 
time 
(sec) 

Rigid 35,465 16,076 158 158 0.00 2.5 
Flex A 89,685 27,510 99 133 25.48 9531.07 
Flex B 35,865 16,226 138 138 0.00 3.24 
Flex C 91,485 27,510 94.47 121 21.81 6277.08 

 

 

Fig. 4. Illustration of the solution obtained for the rigid system (O = PQ%). 

 

Table 2. Tabular illustration of solutions obtained by the flexible designs 

Alternatives FCD
�  �* IJ IL KJ KL .� .M 

Flex A 1 (E = 3, 6) 0.033434 1 3 2 4 5 7 
Flex B 3 (E = 1, 2, 3) N.A. N.A. N.A. N.A. N.A. 5 7 
Flex C 3 (E = 2, 4, 6) 0.000001 1 3 3 3 5 7 
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4.2 Out-of-sample analysis 

Table 3 shows the values of the significant performance measures, based on 1,000 out-of-sample 

scenarios generated through the same GBM process used to produce the ten samples for optimization 

purposes. The purpose of this out-of-sample analysis is to estimate the performance of the solution 

based on forecasts calibrated using historical data, albeit using scenarios that were not used during the 

optimization process. It helps to evaluate how well the solutions perform on scenarios that were not 

seen and deal with the issue of over fitting. It is a complementary analysis of the in-sample test because 

modelling that relies only on in-sample tests is likely to understate the error and overfit the features 

(Tashman, 2000). The possibility of overfitting exists because the criterion used for optimizing (or 

training) the model is not the same as the criterion used for judging the efficacy of the model. The 

optimal solution of a stochastic model is obtained by optimizing the model based on seen or given data, 

but the efficacy is determined by the ability to perform well on unseen data. This unseen data is not 

necessarily based on the same distribution as the given data. Therefore, the efficacy of the solution of a 

model could be much lower than expectations if the model is developed, solved, and tested under the 

same group of data.  

As can be seen, the Flex C solution has the lowest expected total costs across all designs, which are 

24.48% less than the highest cost. It is also the best of the four designs in terms of all performance 

measures except STD and Standard error. The value of flexibility for Flex A, VoF(A) = $23 billion, as 

compared to the rigid design. This value is mainly attributed to both capacity expansion (FS-A) and 

phasing deployment (FS-B). Given that Flex B only contains life extension flexibility (FS-C), its value 

of flexibility VoF(B) = $20 billion indicates that life extension alone has such value, as compared to the 

rigid design. Flex C, on the other hand, contains all three flexibility strategies (FS-A, -B and -C), its 

value of flexibility VoF(C) = $35 billion is attributed to a combination (or interaction) of all three 

flexibility sources, which makes it less than the linear sum of the VoFs above. Therefore, life extension 

is slightly less valuable as compared to capacity expansion plus phasing deployment, based on the 

information given above. It is also possible that life extension is slightly more valuable than capacity 

expansion or phasing deployment, as the sum of these two strategies is just slightly greater than the 



value of life extension alone  (e.g. Flex A design may be lagging or deploying capacity not fast enough 

under some scenarios, and therefore life extension may not be as valuable in some cases). 

Table 3. Results for the out-of-sample analysis ($billion) 

Alternatives  Mean STD P5 P95 Standard error VoF 

Rigid 143 28 104 194 0.168 - 
Flex A 120 30 79 175 0.175 23 
Flex B 123 31 83 184 0.179 20 
Flex C 108 32 67 171 0.182 35 
Best?  Flex C Rigid Flex C Flex C Rigid Flex C 

 

Fig. 5 illustrates the out-of-sample analysis in terms of cumulative density functions. Expected costs 

for Flex C design are clearly lower than those for other designs, while expected costs for Flex A design 

are close to those of the Flex B design. Also, the expected costs for flexible designs are much lower 

than the rigid design. This shows that more typical flexible strategies of phased deployment and capacity 

expansion, and novel flexibility strategy of life extension, do add as much value to the system even 

when the discount rate is fairly large (i.e., 10%) and when public acceptance is taken into consideration. 

This makes sense because the implemented flexibility may result in enough financial return (i.e. cost 

savings) from the investment if the project ends earlier. 

 

Fig. 5. Cumulative density functions for the out-of-sample analysis (O = PQ%). 

4.3 Sensitivity analysis 

The sensitivity analysis shows how uncertainty in the output is affected by variability in the input 

parameter assumptions. A one-factor-at-a-time (OFAT) approach is applied to identify how the 

significant parameters (e.g., expected growth rate, discount rate) influence the expected value of 
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flexibility. The corresponding results are shown in Tornado diagrams in Fig. 6. The terms “base”, “low”, 

and “high” represent different values for the significant parameters, which are listed in Table 4. In the 

flexibility analysis above, the parameters used are based on the base case values listed in Table 4, except 

for mean growth rate and volatility (which are based on the upper cases). The low and base values for 

mean growth rate and volatility are calculated from actual electricity production data in the United 

States and India. This examines how the value of flexibility evolves if the flexibility strategies are 

applied to a developing economy with slower growth  than China (e.g., India), or like a developed 

economy (e.g., the United States), instead of simply focusing on an optimistic demand growth scenario 

(i.e., China). The low value for magnification is ? = 3 because too small magnification makes little 

sense in reality (i.e., the probability of occurrence of the high-level events is considerably large). The 

cost associated with a penalty is also known as the Value of Lost Load (VOLL). The Levelized Cost of 

Electricity (LCOE) for nuclear power was around 80 to 105 British pounds in 2010 (Department of 

Energy and Climate Change (2011)). A medium penalty cost is thus assumed to be around twice the 

highest value of the real LCOE, which is £200/MWh, or the equivalent of $364.33/MWh when 

converting from British pounds to US dollars using the exchange rate from 2006.  

Table 4. Values for the significant parameters in the sensitivity analysis 

Parameters  Low Base  Upper 

Mean growth rate (0) 0.0047 0.0587 0.1011 
Volatility (2) 0.0197 0.0273 0.0359 

Discount rate (R) 7.5% 10% 12.5% 
Magnification (?) 3 3.5 4 
Penalty costs ($/MWh) 273.25 364.33 455.42 

 

Fig. 6 shows the results of the sensitivity analysis focusing on the value of flexibility when each 

parameter is varied independently, while keeping other parameters at their constant base value. As can 

be seen, this value is most affected by the discount rate, then by expected growth rate and the penalty 

costs. The lower (higher) the discount rate, the more (less) valuable flexibility is. Therefore, the ability 

to avoid unnecessary cost deployment as enabled by the flexible alternatives should have a bigger (lower) 

impact in terms of expected discounted cost savings when the discount rate is lower (higher).  



 

 

 

Fig. 6. Tornado charts for the value of flexibility. 
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flexibility, therefore, decreases (increases). One interesting observation is that volatility has very little 

impacts on the value of flexibility. One may expect higher volatility to increase the expected value of 

flexibility. This may be because the value of volatility considered in the analysis is too small to enable 

the system to deal better or worse when uncertainty is more (less) significant. 

4.4 Rigid design vs. Flex C design 

This subsection revisits the rigid and Flex C designs in order to illustrate the benefits of the Flex C 

design over a more rigid solution. These two design alternatives are analyzed in the same exogenous 

scenarios, which are selective samples from the 1,000 out-of-sample scenarios in the previous 

subsection. It also aims to show some extremely rare cases where the rigid design performs best. Fig. 7 

details the two sample scenarios used to analyze the performance of these two designs when the discount 

rate is 10%. As can be seen in the second graph of Fig. 7, the cumulative INES never goes up to 5 in 

Scenario 1, which implies that the flexibility strategies will always be exercised if and when needed. 

On the other hand, in Scenario 2, the cumulative INES goes up to 7 in periods 22 and 40, and up to 6 in 

several other periods. This indicates that the system will be closed after period 22, and flexibility 

strategies may not be implemented for this reason. 

 

Fig. 7. Projections of an uncertainty scenario. (Above) electricity demand; (Below) cumulative INES. 

Fig. 8 shows clearly how these two designs perform under the same assumptions and the same 
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supply) is less than customers’ needs (i.e., demand), and vice versa. In Scenario 1 the rigid design 

deployed 4 units of capacity at both sites 1 and 2 (8 units of capacity in total) at the beginning of the 

study life, while Flex C design only deployed 1 unit of capacity at sites 2, 4 and 6 (3 units of capacity 

in total), respectively. The rigid system then stopped operations after year 26 (i.e., capacity becomes 

zero) due to the limited lifetime of the plants. In contrast, the Flex C design gradually deployed capacity 

based on the decision rules and kept operating until the end of the life cycle of the system. The phased 

deployment and capacity expansion strategies allow the system to deploy capacity over time and space, 

while the life extension strategy extends the lifetime of a plant to 30 years (the original useful life is 20 

years). These flexibility strategies enabled the system to generate more electricity, and thus reduced the 

total expected costs because the system needed to buy less electricity from the market over its lifecycle. 

Although the Flex C design dominates stochastically the rigid design, there are few scenarios where the 

rigid design performs best, namely Scenario 2 in Fig. 7. This is because the initial capacity deployed 

for the rigid design is higher than the Flex C design (i.e., 8 units vs. 6 units), while the flexibility 

strategies could not be fully exercised due to the realization of the scenario (e.g., unfavorable market 

conditions and social environment). The two graphs in Fig. 8 show how the Flex C design differs from 

the rigid design, and how much system operators could benefit from enabling flexibility under certain 

conditions. One should note that this example capacity deployment applies only to the scenarios shown 

in Fig. 7. Every new combination of scenario would lead to a different capacity deployment path, based 

on the stochastically optimal decision rules found by solving the mathematical model (see 

Supplementary Material). This dynamic property of the flexible solutions is an important benefit of the 

approach used for real option and flexibility analysis. 

 



 

 

Fig. 8. Performance comparison between Rigid and Flex B designs. 

5 Conclusions 

Growing electricity demand will inevitably lead energy planners to face the issue of public acceptance 

of nuclear technology in the near future. The main contribution of this paper is a novel approach 

combining decision rule and stochastic programming for determining the optimal technology, design 

and deploying policies for nuclear power infrastructure systems. The approach exploits the idea of 

strategic-level flexibility to improve the expected life cycle performance of the system under long-term 

uncertainty in electricity demand and social acceptance. It shows how a decision rule based approach 

can be further extended to consider simultaneously multiple flexibility strategies, uncertainty sources, 

and sites for capacity deployment, which as not yet been done (Cardin et al., 2016). The case study 

results focusing on nuclear capacity deployment in a province of a developing economy like China from 

showed that a flexible system combining capacity deployment, expansion, and life extension (i.e. the 

Flex C design) could significantly reduce the expected total cost and outperformed the three other 
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designs, including a rigid design that determines the stochastically optimal deployment plan over the 

system lifecycle. In addition, the sensitivity analysis showed that all flexible systems provided better 

adaptability and higher value than a stochastically optimal but rigid design strategy when assumptions 

about input parameters change. This analysis also demonstrated that the flexible designs are better at 

taking advantage of upside opportunities and reducing downside risks in demand and social acceptance, 

thus improving overall the expected economic performance and costs.  

Another contribution of this study was the demonstration of a feasible optimal deployment plan for 

deploying nuclear power systems, which may provide useful insights to policy and decision-makers. A 

planner could deploy an amount of capacity firstly at the beginning of the lifecycle, following the 

recommended initial configuration, and deploy additional capacity following the decision rule 

guidelines. After initial capacity deployment is complete, the decision-maker monitors the demand 

satisfaction for the past several periods (e.g., three years in this study) to decide whether or not to add 

more capacity, and monitors as well social acceptance levels for nuclear technology – which can be 

assessed via polls, complemented by a proxy such as the INES system. S/he may decide whether or not 

to exercise flexibility strategies or keep operating the system at specific times, and revisit such decisions 

on a regular basis. 

There are, however, several shortcomings in this study that fuel opportunities for future work and 

improvement. First, the model inherits weaknesses from the stochastic programming and the sample 

average approximation method, i.e., the observed performance difference between optimization and 

when the out-of-sample analysis is performed. If the distribution of the future demand is not perfectly 

fitted with the distribution considered in the model, the result may not be as good as expected. Second, 

the flexibility strategies considered in this study may not be the only ones feasible. It is possible to find 

other practical flexibility strategies and/or decision rules to improve the expected system performance. 

Furthermore, the assumptions of the method for generating INES are made based on the authors’ 

understanding of the scale system. There is no unique and ultimately accepted approach for generating 

such data at present times in simulations. The demonstration is intended to be used as guidelines, and 

can be modified in the model. Moreover, some assumptions may be revisited, since some 



simplifications have been made to suit the purpose of the study. For instance, demolishing a unit or 

plant would result in issues regarding waste management and disposal, as well as corresponding costs. 

Considering post-closure issues and costs could make the analysis more realistic and reliable. Also, the 

study life of nuclear power plants can be longer (e.g., 60 years) and close to the real useful life of nuclear 

power plants.  

To further improve this work, the generation of INES indices could be modeled more closely through 

detailed data analytics and calibration. This may require a more in depth study of the INES factor, and 

the treatment of ethics as far as nuclear power is concerned – see studies by Taebi and van de Poel 

(2015). Relaxing some of the assumptions (e.g., a power plant can operate for a few years after a 

decision is made to close the plant) or modifying important parameter inputs (e.g., study life) may be 

an opportunity for future work. The consideration of uncertainty in construction costs could also make 

the study more realistic. In addition, the proposed model could be modified to analyze other strategic-

level flexibility (e.g., switching between technologies, safety upgrades), objective functions (e.g., net 

present value), and/or to test various decision rules. The proposed model could be generalized 

accordingly as a framework to the analysis of facility location problems, considering flexibility in 

infrastructure systems. To improve the attributes of the solution, such as the Quality of the Solution 

(QoS) and the Time to Best Solution (TBS), more advanced algorithms could be developed to accelerate 

the solving (e.g., based on Bender’s decomposition). Last but not least, the proposed design alternatives 

could be of interest for facility location problems in the energy sector as a whole, considering 

uncertainty. The analysis of the capacity deployment problem of nuclear power plants illustrates the 

potential of the proposed framework for flexibility and real options analysis.   
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Supplementary Material 

Data Replication 

Data and programs used in this paper are available to any researchers for purposes of replication. All 

materials can be provided on request by contacting the corresponding author. 

 

The International Nuclear Event Scale (INES) 

The International Nuclear (and Radiological) Event Scale (INES) was introduced in 1990 by the 

International Atomic Energy Agency (IAEA) to serve as “a tool for promptly and consistently 

communicating to the public the safety significance of events associated with sources of ionizing 

radiation” (International Atomic Energy Agency, 2015). The scale is intended to be logarithmic, and 

each increasing level represents an accident approximately ten times more severe than the previous 

level. The following figure shows the severity structure of the INES factors. Level 1 to level 3 are 

defined as incidents, while level 4 to level 7 are referred to as accidents. Level 0 is deviation, which has 

no safety significance (e.g., a fire in the Nuclear Waste Volume Reduction Facilities of the Japanese 

Atomic Energy Agency in Tokaimura). To help understand the INES and its level, a few examples are 

listed below. 

 

Fig. 9. Visualization of the structure of the INES (International Atomic Energy Agency, 2015). 

Level 7 is also called major accidents, and corresponding examples are the Chernobyl disaster in 

Ukraine and the Fukushima disaster in Japan.  Level 6 is serious accidents, such as the Kyshtym disaster 
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in the USSR in 1957. Level 5 and level 4 are accidents with wider (local) consequences. For example, 

the Three Mile Island accident in the United States in 1979 (level 5), and the Buenos Aires criticality 

accident on a research reactor in Argentina in 1983. Other examples are the THORP plant incident in 

the UK in 2005 (level 3), and the TNPC incident in France in 2008 (level 1). 

 

Attributes of all flexibility strategies and flexible designs 

Table 5. A simple outline of flexible designs and flexibility strategies 

 Flex A Flex B Flex C 

Flexibility 

strategies 

FS-A: 

Flexible capacity 

expansion 

A nuclear power plant 

could be uprated if 

needed. 

√  √ 

FS-B: 

Flexible phased 

deployment 

Nuclear power plants 

could be deployed over 

time and space. 

√  √ 

FS-C: 

Life extension 

The useful life of a nuclear 

power plant could be 

extended if need. 

 √ √ 

 

 

Mathematical Model 

The following summarizes the modeling notation. For simplicity, the values of the parameters 

considered in the numerical study are also shown here: 

� = the set of strategic periods in a complete life cycle (� ∈ �, |�| = 40), which is the study life; 

�� = the set of strategic periods excluding � = 0; 



T = the set of candidate sites for the nuclear power plants (E ∈ T, |T| = 6); 

= = the set of uncertainty scenarios (� ∈ =, |=| = 10); 

U = the set of plant phases (G ∈ U, |U| = 4); 

/�� = the demand for electricity within strategic period � under scenario �; 

,�� = the cumulative INES factor in strategic period � under scenario �; 

R = discount rate per strategic period (e.g., 10%); 

$� = the corresponding probability of scenario � (e.g., 10%); 

G∗, G∗∗ = the smallest and biggest phases of a plant, respectively; 

WX, W∗ = the smallest and biggest capacity of a plant, respectively; 

YZ�[ , Y\]L , YD]\ , YZ^J_ = the fixed costs ($954.55 million), unit cost of a nuclear reactor ($1.776 billion), 

unit variable cost ($7.01/MWh), and unit cost for fuel ($2.00/MWh), respectively; 

Y` = the unit cost of losing electricity demand ($364.33/MWh). This penalty or contractual cost would 

occur when power plants cannot generate enough electricity to meet the electricity demand; 

�L , �J , �_ = the delay periods for new plant construction (6 years) and capacity expansion (3 years), and 

the additional period for life extension (10 years), respectively. For instance, a plant is decided to be 

deployed at � = 0, and this plant will be available for use starting from � = �L; 

�* = the review period for the decision rules regarding phased deployment and capacity expansion;  

�ab = the first period when life extension is available; 

�C = transmission loss factor of electricity for a plant at site E. The corresponding transmission loss 

factor is simply assumed to be inversely proportional to the distance between electricity generators (i.e., 

nuclear reactors) and electricity consumers linked by the power grid network, which are 1 (��), 0.98 

(�M), 0.96 (�c), 0.94(�d), 0.92(�e), and 0.9(�f), respectively; 



g,h = a small tolerance (e.g., 10�c) and an arbitrary large integer (e.g., 10f), used to ensure a given 

constraint is always or never satisfied. 

The specific decision variables are introduced as follows. 

FCD
�  = 1 if a phase G plant is deployed at site E in strategic period � = 0; 

FC��
M  = 1 if a plant is deployed at site E in strategic period � ≥ 1 under scenario �; 

iC�� = 1 if the capacity of a plant is expanded at site E in strategic period � ≥ 1 under scenario �; 

jC�� = 1 if the life cycle of a plant is extended at site E in strategic period � ≥ 1 under scenario �; 

�CD�� = 1 if a phase G plant is open at site E in strategic period � under scenario �; 

�* ∈ (0,1) , the threshold for triggering decision rules regarding phased deployment and capacity 

expansion; 

.�, .M = integers, the thresholds for partitioning the cumulative INES index into three zones, e.g., if this 

index is greater than or equal to .M, it indicates that the cumulative index in � has fallen into the dead 

zone; 

KL , KJ  = integers, the number of plants to be deployed or expanded if the decision rule is triggered, 

respectively; 

IL , IJ = integers, the capacity of a plant that should be deployed or expanded if the decision rule is 

triggered, respectively; 

YkC��, YlC�� = integers, the capacity of a plant to be deployed or expanded at site E in strategic period � 

under scenario �; 

m��
� , m��

M  = 1 if the cumulative INES factor falls into the warning or dead areas in strategic period � under 

scenario �, respectively;  

no = binary, decision rules related variables; 



p��, ���  = non-negative, used to express the difference between the demand for electricity and the 

electricity generated by plants; 

q = binary, indicator variable. 

The objective of the model is to minimize the expected total costs over the life cycle of the system. This 

is analogous to the wide use of levelized cost of electricity, which can be compared directly to the price 

of electricity to determine whether a system is profitable. The total discounted costs comprise fixed, 

variable operation and maintenance, variable fuel, and penalty costs. The costs spent since period 1 are 

discounted back to period 0. The equation numbers follow from the sequence in the paper. 

 
*

1 1

2

var

min   ( )

         ( [ ( ) ( ) ] )

fix rac jv s tjvj v s t

fix jts rac jts jts fuel jvts p tsj v

C o C o p r

C o C CO CE C C x C ω

+ +

+ + + + +

∑ ∑ ∑ ∑

∑ ∑
  (9) 

Formulations (10) –(12) are normal logic constraints that make the model realistic. For instance, 

inequality (11) indicates that any candidate site has one and only one chance to deploy a new plant over 

the life cycle. According to the definitions of variables FCD
�  and �CD��, inequalities (10) and (12) ensure 

that a non-zero value associated with a larger phase (i.e., G) of such a variable will force the value 

associated with a smaller phase to be equal to one.  

 1 1

, 1. .    ,  ,  ;j v jvs t o o J v Vj+ ≤ ∈ ∈   (10) 

 *

1 2 1,  ,  ;jtsjv
t

o o j J s S+ ≤ ∈ ∈∑   (11) 

 , 1, ,  ,  ,  ,  ;j v ts jvtsx x J v V t T s Sj+ ≤ ∈ ∈ ∈ ∈   (12) 

The following inequalities ensure that variables FC��
M  and YkC�� get the right values. Formulations (13) 

– (14) indicate that the capacity to be initially deployed at a candidate site (if needed) from period 1 is 

a constant, and so is the capacity of expansion. The number of plants to be deployed or expanded at 

different times should also be consistent, as shown in (15) – (16).  



 2 * 2

1,  , ,  ; jts jts jtsU o U CO U o Sj J t T s≤ ≤ ∈ ∈ ∈′ ′   (13) 

 ( ) ( ) ( )2 * 2

11 1 ,  ,  ,  ;
jts c jts jts

U o U m CO U o j J t T s S− ≤ − ≤ −′ ′ ∈ ∈ ∈   (14) 

 2

1,  , ; c c

ts jts tsj
DR o J DR t T s S≤ ≤ ∈ ∈∑   (15) 

 ( )2

11 1 ,  ,  ;c c

ts c jts tsj
DR n o J DR t T s S− ≤ − ≤ − ∈ ∈∑   (16) 

Constraints (17) – (22) represent the relationship between the thresholds (i.e., .) and the cumulative 

INES indicators (i.e., m�� ). More specifically, inequalities (17) - (20) determine which area the 

cumulative INES falls into at period �, while inequalities (21) and (22) represent the logical relationship 

among areas. That is, decisions restricted in the warning area should also be restricted in the dead area. 

Once the cumulative INES falls into the dead area, no matter when, the status of indicator m��
M  will not 

change for the rest of the life cycle.  

 
1 2

1 ,  ,  ;ts ts tsI q My My t T s Sε≤ − + + ∈ ∈   (17) 

 ( )1 2

1 1 ,  , ;
ts ts ts

I q M y My t T s S≥ − − − ∈ ∈   (18) 

 2 2
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ts ts t s

I q My My T s Stε −≤ − + + ∈ ∈   (19) 

 ( )2 2

2 1, ,  1 ,  ;
ts ts t s

tI q M y My T s S−≥ − − − ∈ ∈   (20) 

 
2 1 ,  ,  ;ts tsy y t T s S≤ ∈ ∈   (21) 

 2 2

1, ,   , ;
t s ts

y y t T s S− ≤ ∈ ∈   (22) 

The following inequalities ((23) - (25)) indicate the possible cases when flexibility strategies could not 

be exercised, such as when the cumulative INES falls into the warning area (i.e., m��
� = 1) or a plant is 

under expansion (i.e., q��
rs� = 1). 
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The following formulations explicitly describe the conditions when the indicator variables, with respect 

to decision rule availability, can be non-zero value (i.e., logically true). For instance, inequalities (26) 

and (27) represent the case when indicator variable q��
rs� must be equal to one if the target plant is still 

under expansion, and zero otherwise. Similarly, the indicator variable q��
rsM will be one if an initial 

installation or phased deployment was exercised within previous �L  periods, see (28) – (31). 

Formulations (32) and (33) indicate that no more deployment can be exercised if all candidate sites are 

full. 
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Since the system capacity and actual electricity demand are not always equal, it is necessary to know 

the difference between these values, which is described in (36) – (38). Auxiliary variables p�� and ��� 

are the positive and negative part of this difference, respectively. According to the definition, only one  

of these values can be greater than zero at a time. Constraints (39) – (42)show the condition of demand 

satisfaction when phased deployment and/or capacity expansion could be triggered, and (43) – (45)

indicate that flexibility strategies are available only if the conditions of demand satisfaction and social 

acceptance are favorable. 
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If there is no plant in the system, capacity expansion is of course unavailable. Similarly, if all sites are 

occupied, phased deployment also becomes unavailable. These are represented in (46) – (47) and (51) 

– (52), respectively. The priority of exercising capacity expansion is higher than that of phased 

deployment when conditions are favorable. This can be found in formulations (48) - (50) and (53) -(56). 
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Formulations (57) – (61) represent situations when life extension could be exercised. That is, situations 

when there is already a plant deployed at the target site �ab periods before and social acceptance is 

favorable. Constraints (62) – (71) specifically show how a life extension strategy is exercised at a 

candidate site. 
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Constraints (72) – (74) show when regular operation (including life extension) is done at a site. 

Formulations (75) – (79) show the correlation between different decisions. For example, capacity 



expansion cannot occur if there is no existing plant (see (75)), or if the existing plant reaches its upper 

bound (see (76)).  
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The remaining inequalities explicitly show dynamics of the capacity of a nuclear power plant. The 

capacity in period �  will be equal to the capacity in the last period plus the expected capacity by 

deployment and/or expansion, when public acceptance is favorable and the plant (system) is still in 

operation.  
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Values of Parameters 

Table 6. List of assumptions for the numerical analysis. 

Parameters  Assumption  

Declared net capacity (DNC) of a nuclear reactor (i.e. 1 unit of 
capacity) 

600 MWe per reactor 

Pre-development costs (PD) $455.41 million in 2006 
money 

Construction costs of a nuclear power plant (w/o reactor) (YZ�[) $954.55 million 

Costs of a reactor (Y\]L) $1.776 billion 

Operation and maintenance (O&M) costs of a nuclear power plant 
(YD]\) 

$7.01/MWh per plant, 
followed by a $7.01/MWh 
per reactor 

Fuel supply costs for thorium (YZ^J_) $2.00/MWh 

Contractual (penalty) costs for losing demand (Y`) $364.33/MWh 

Costs of capital (discount rate) (R) Nominally 10% 

Annual growth rate Nominally 3% for O&M 
costs and contractual costs, 
2% for fuel costs 

The study life of the system 40 years 

The useful life of nuclear power plants Nominally 20 years 

Construction period of initial deployment (�L) 6 years 

Construction period of capacity expansion (�J) 3 years 

Additional period of life extension (�_) 10 years 

Observation period for flexible phased deployment and capacity 
expansion (�*) 

3 years 

Observation period for life extension 6 years 

Small tolerance (g)  Nominally 10�c 

Large integer (h) Nominally 10f 

 


