13 research outputs found

    ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins

    Get PDF
    The endosomal sorting complexes required for transport (ESCRT) machinery mediates the physical separation between daughter cells during cytokinetic abscission. This process is regulated by the abscission checkpoint, a genome protection mechanism that relies on Aurora B and the ESCRT-III subunit CHMP4C to delay abscission in response to chromosome missegregation. In this study, we show that Unc-51-like kinase 3 (ULK3) phosphorylates and binds ESCRT-III subunits via tandem MIT domains, and thereby, delays abscission in response to lagging chromosomes, nuclear pore defects, and tension forces at the midbody. Our structural and biochemical studies reveal an unusually tight interaction between ULK3 and IST1, an ESCRT-III subunit required for abscission. We also demonstrate that IST1 phosphorylation by ULK3 is an essential signal required to sustain the abscission checkpoint and that ULK3 and CHMP4C are functionally linked components of the timer that controls abscission in multiple physiological situations. DOI: http://dx.doi.org/10.7554/eLife.06547.00

    ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes

    No full text
    The endosomal sorting complexes required for transport (ESCRT) proteins have a critical function in abscission, the final separation of the daughter cells during cytokinesis. Here, we describe the structure and function of a previously uncharacterized ESCRT-III interacting protein, MIT-domain containing protein 1 (MITD1). Crystal structures of MITD1 reveal a dimer, with a microtubule-interacting and trafficking (MIT) domain at the N terminus and a unique, unanticipated phospholipase D-like (PLD) domain at the C terminus that binds membranes. We show that the MIT domain binds to a subset of ESCRT-III subunits and that this interaction mediates MITD1 recruitment to the midbody during cytokinesis. Depletion of MITD1 causes a distinct cytokinetic phenotype consistent with destabilization of the midbody and abscission failure. These results suggest a model whereby MITD1 coordinates the activity of ESCRT-III during abscission with earlier events in the final stages of cell division

    The UBAP1 Subunit of ESCRT-I Interacts with Ubiquitin via a SOUBA Domain

    No full text
    SummaryThe endosomal sorting complexes required for transport (ESCRTs) facilitate endosomal sorting of ubiquitinated cargo, MVB biogenesis, late stages of cytokinesis, and retroviral budding. Here we show that ubiquitin associated protein 1 (UBAP1), a subunit of human ESCRT-I, coassembles in a stable 1:1:1:1 complex with Vps23/TSG101, VPS28, and VPS37. The X-ray crystal structure of the C-terminal region of UBAP1 reveals a domain that we describe as a solenoid of overlapping UBAs (SOUBA). NMR analysis shows that each of the three rigidly arranged overlapping UBAs making up the SOUBA interact with ubiquitin. We demonstrate that UBAP1-containing ESCRT-I is essential for degradation of antiviral cell-surface proteins, such as tetherin (BST-2/CD317), by viral countermeasures, namely, the HIV-1 accessory protein Vpu and the Kaposi sarcoma-associated herpesvirus (KSHV) ubiquitin ligase K5

    Acid bone lysate activates TGFβ signalling in human oral fibroblasts

    Get PDF
    Abstract Demineralized bone matrix is a widely used allograft from which not only the inorganic mineral but also embedded growth factors are removed by hydrochloric acid (HCl). The cellular response to the growth factors released during the preparation of demineralized bone matrix, however, has not been studied. Here we investigated the in vitro impact of acid bone lysate (ABL) prepared from porcine cortical bone chips on oral fibroblasts. Proteomic analysis of ABL revealed a large spectrum of bone-derived proteins including TGF-β1. Whole genome microarrays and RT-PCR together with the pharmacologic blocking of TGF-β receptor type I kinase with SB431542 showed that ABL activates the TGF-β target genes interleukin 11, proteoglycan 4, and NADPH oxidase 4. Interleukin 11 expression was confirmed at the protein level by ELISA. Immunofluorescence and Western blot showed the nuclear localization of Smad2/3 and increased phosphorylation of Smad3 with ABL, respectively. This effect was independent of whether ABL was prepared from mandible, calvaria or tibia. These results demonstrate that TGF-β is a major growth factor that is removed upon the preparation of demineralized bone matrix
    corecore