14,956 research outputs found
Recommended from our members
Understanding the experience of midlife women taking part in a work-life balance career coaching programme: an interpretative phenomenological analysis
Midlife women currently have the highest ever presence in the work place with many juggling work with demanding home lives. Women are reporting increased dissatisfaction with their work - life balance yet few studies exist exploring how practical interventions might help . This action - research involved five female participants , based in Lon don, on a career coaching programme designed to improve work - life balance. Interpretative Phenomenological Analysis suggested the programme offered a safe place to support women in reconciling work and life roles with their individual values and needs. Thr ough increasing positivity and resilience the coaching enabled participants to define and shape a better work - life balance
A study of compressible turbulent boundary layers using the method of invariant modeling
Model equations for studying compressible turbulen boundary layer
Archeological Investigations at the Hudnall-Pirtle Site (41RK4) An Early Caddo Mound Center in Northeast Texas
The Hudnall-Pirtle site (41RK4) is situated on a large T-1 alluvial terrace of the Sabine River in northern Rusk County in Texas. This area of the state, commonly called Northeast Texas, is part of the Southern Gulf Coastal Plain, a relatively level, sloping plain formed by the pre-Pleistocene embayment of the Gulf of Mexico.
From a biogeographical perspective, the site is located in the Oak-Hickory-Pine forest of eastern Texas, otherwise known as the Pineywoods. This area represents the western extension of the southern coniferous forests and is dominated by shortleaf and loblolly pine trees. Hardwood trees, including various oaks, hickory, elm, and gum, are the dominant vegetation in the floodplains of rivers and major creeks in Northeast Texas
On the control of acute rodent malaria infections by innate immunity
Does specific immunity, innate immunity or resource (red blood cell) limitation control the first peak of the blood-stage parasite in acute rodent malaria infections? Since mice deficient in specific immunity exhibit similar initial dynamics as wild-type mice it is generally viewed that the initial control of parasite is due to either limitation of resources (RBC) or innate immune responses. There are conflicting views on the roles of these two mechanisms as there is experimental evidence supporting both these hypotheses. While mathematical models based on RBC limitation are capable of describing the dynamics of primary infections, it was not clear whether a model incorporating the key features of innate immunity would be able to do the same. We examine the conditions under which a model incorporating parasite and innate immunity can describe data from acute <i>Plasmodium chabaudi</i> infections in mice. We find that innate immune response must decay slowly if the parasite density is to fall rather than equilibrate. Further, we show that within this framework the differences in the dynamics of two parasite strains are best ascribed to differences in susceptibility to innate immunity, rather than differences in the strains' growth rates or their propensity to elicit innate immunity. We suggest that further work is required to determine if innate immunity or resource limitation control acute malaria infections in mice
Recommended from our members
Um, Err, Ahh Careers Practitioners Perceptions of Weight: A Thematic Analysis
Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations
We have measured the number of quasiparticles and their lifetime in aluminium
superconducting microwave resonators. The number of excess quasiparticles below
160 mK decreases from 72 to 17 m with a 6 dB decrease of the
microwave power. The quasiparticle lifetime increases accordingly from 1.4 to
3.5 ms. These properties of the superconductor were measured through the
spectrum of correlated fluctuations in the quasiparticle system and condensate
of the superconductor, which show up in the resonator amplitude and phase
respectively. Because uncorrelated noise sources vanish, fluctuations in the
superconductor can be studied with a sensitivity close to the vacuum noise
Energy-Efficient Algorithms
We initiate the systematic study of the energy complexity of algorithms (in
addition to time and space complexity) based on Landauer's Principle in
physics, which gives a lower bound on the amount of energy a system must
dissipate if it destroys information. We propose energy-aware variations of
three standard models of computation: circuit RAM, word RAM, and
transdichotomous RAM. On top of these models, we build familiar high-level
primitives such as control logic, memory allocation, and garbage collection
with zero energy complexity and only constant-factor overheads in space and
time complexity, enabling simple expression of energy-efficient algorithms. We
analyze several classic algorithms in our models and develop low-energy
variations: comparison sort, insertion sort, counting sort, breadth-first
search, Bellman-Ford, Floyd-Warshall, matrix all-pairs shortest paths, AVL
trees, binary heaps, and dynamic arrays. We explore the time/space/energy
trade-off and develop several general techniques for analyzing algorithms and
reducing their energy complexity. These results lay a theoretical foundation
for a new field of semi-reversible computing and provide a new framework for
the investigation of algorithms.Comment: 40 pages, 8 pdf figures, full version of work published in ITCS 201
- …