14 research outputs found

    Conflicting effects of caffeine on apoptosis and clonogenic survival of human K1 thyroid carcinoma cell lines with different p53 status after exposure to cisplatin or UVc irradiation.

    No full text
    Caffeine has been widely described as a chemo/radiosensitizing agent, presumably by inhibiting DNA repair, and affecting preferentially cells with an altered p53 status. We evaluated the effects of caffeine using isogenic and isophenotypic K1 cells derived from a papillary thyroid carcinoma and displaying either a wild type or a mutated p53 status. Apoptosis and clonogenic survival were examined after exposure of the cells to cisplatin or UVc irradiation. We find that at the most currently used concentration, 2mM, caffeine hinders cisplatin or UVc induced apoptosis in K1 cells. In addition, at this already barely achievable concentration in vivo, caffeine does not decrease their clonogenic survival. Hence in our cellular model, caffeine does not behave as a chemo- or a radiosensitizer. Although surprising, these results (1) are in agreement with the delayed G2/M block caused by caffeine that we previously observed in normal human fibroblasts and K1 cells and (2) allow us to elucidate some discrepancies concerning this molecule throughout the literature such as increase or decrease of apoptosis and clonogenic survival, activation or deactivation of molecules involved in DNA damage repair and proliferation inhibition but accelerated G2/M traverse.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Unfaithfulness and promiscuity of a mutant androgen receptor in a hormone-refractory prostate cancer.

    No full text
    Missense mutations in the androgen receptor (AR) contribute to the failure of hormonal therapy for prostate cancer (PCa), but the underlying molecular bases remain uncharacterized. Here, we describe a new AR variant found in a hormone-refractory metastatic PCa, in which threonine 575 in the DNA binding domain, and threonine 877 in the ligand-binding domain, were both replaced by an alanine. Using gene reporter assays, we demonstrate that the T575A mutation weakened transcriptional activity from promoters containing AR-specific responsive elements, while activity from promoters with AR-non-specific elements was enhanced. Data from gel shift experiments revealed a preferential binding of the T575A mutant to AR-non-specific motifs. We demonstrate that the two mutations T575A and T877A cooperate to confer new functional properties on the AR, and that the mutant AR functions simultaneously as a promiscuous AR due to the T877A mutation, and an unfaithful AR due to the T575A mutation.Journal Articleinfo:eu-repo/semantics/publishe

    Data sharing under the general data protection regulation: Time to harmonize law and research ethics?

    No full text
    The General Data Protection Regulation (GDPR) became binding law in the European Union Member States in 2018, as a step toward harmonizing personal data protection legislation in the European Union. The Regulation governs almost all types of personal data processing, hence, also, those pertaining to biomedical research. The purpose of this article is to highlight the main practical issues related to data and biological sample sharing that biomedical researchers face regularly, and to specify how these are addressed in the context of GDPR, after consulting with ethics/legal experts. We identify areas in which clarifications of the GDPR are needed, particularly those related to consent requirements by study participants. Amendments should target the following: (1) restricting exceptions based on national laws and increasing harmonization, (2) confirming the concept of broad consent, and (3) defining a roadmap for secondary use of data. These changes will be achieved by acknowledged learned societies in the field taking the lead in preparing a document giving guidance for the optimal interpretation of the GDPR, which will be finalized following a period of commenting by a broad multistakeholder audience. In parallel, promoting engagement and education of the public in the relevant issues (such as different consent types or residual risk for re-identification), on both local/national and international levels, is considered critical for advancement. We hope that this article will open this broad discussion involving all major stakeholders, toward optimizing the GDPR and allowing a harmonized transnational research approach. © 2021 Lippincott Williams and Wilkins. All rights reserved

    Data Sharing Under the General Data Protection Regulation: Time to Harmonize Law and Research Ethics?

    Get PDF
    The General Data Protection Regulation (GDPR) became binding law in the European Union Member States in 2018, as a step toward harmonizing personal data protection legislation in the European Union. The Regulation governs almost all types of personal data processing, hence, also, those pertaining to biomedical research. The purpose of this article is to highlight the main practical issues related to data and biological sample sharing that biomedical researchers face regularly, and to specify how these are addressed in the context of GDPR, after consulting with ethics/legal experts. We identify areas in which clarifications of the GDPR are needed, particularly those related to consent requirements by study participants. Amendments should target the following: (1) restricting exceptions based on national laws and increasing harmonization, (2) confirming the concept of broad consent, and (3) defining a roadmap for secondary use of data. These changes will be achieved by acknowledged learned societies in the field taking the lead in preparing a document giving guidance for the optimal interpretation of the GDPR, which will be finalized following a period of commenting by a broad multistakeholder audience. In parallel, promoting engagement and education of the public in the relevant issues (such as different consent types or residual risk for re-identification), on both local/national and international levels, is considered critical for advancement. We hope that this article will open this broad discussion involving all major stakeholders, toward optimizing the GDPR and allowing a harmonized transnational research approach
    corecore