752 research outputs found

    Long-Range Excitons in Optical Absorption Spectra of Electroluminescent Polymer Poly(para-phenylenevinylene)

    Full text link
    The component of photoexcited states with large spatial extent is investigated for poly(para-phenylenevinylene) using the intermediate exciton theory. We find a peak due to long-range excitons at the higher-energy side of the lowest main feature of optical spectra. The fact that the onset of long-range excitons is located near the energy gap is related to the mechanisms of large photocurrents measured in such energy regions. We show that a large value of the hopping integral is realistic for characterizing optical excitations.Comment: To be published in J. Phys. Soc. Jpn. (Letters

    Reconfigurable Autonomy

    Get PDF
    This position paper describes ongoing work at the Universities of Liverpool, Sheffield and Surrey in the UK on developing hybrid agent architectures for controlling autonomous systems, and specifically for ensuring that agent-controlled dynamic reconfiguration is viable. The work outlined here forms part of the Reconfigurable Autonomy research project

    Theory of Exciton Migration and Field-Induced Dissociation in Conjugated Polymers

    Full text link
    The interplay of migration, recombination, and dissociation of excitons in disordered media is studied theoretically in the low temperature regime. An exact expression for the photoluminescence spectrum is obtained. The theory is applied to describe the electric field-induced photoluminescence-quenching experiments by Kersting et al. [Phys. Rev. Lett. 73, 1440 (1994)] and Deussen et al. [Synth. Met. 73, 123 (1995)] on conjugated polymer systems. Good agreement with experiment is obtained using an on-chain dissociation mechanism, which implies a separation of the electron-hole pair along the polymer chain.Comment: 4 pages, RevTeX, 2 Postscript figure

    Molecular Orbital Models of Benzene, Biphenyl and the Oligophenylenes

    Full text link
    A two state (2-MO) model for the low-lying long axis-polarised excitations of poly(p-phenylene) oligomers and polymers is developed. First we derive such a model from the underlying Pariser-Parr-Pople (P-P-P) model of pi-conjugated systems. The two states retained per unit cell are the Wannier functions associated with the valence and conduction bands. By a comparison of the predictions of this model to a four state model (which includes the non-bonding states) and a full P-P-P model calculation on benzene and biphenyl, it is shown quantitatively how the 2-MO model fails to predict the correct excitation energies. The 2-MO model is then solved for oligophenylenes of up to 15 repeat units using the density matrix renormalisation group (DMRG) method. It is shown that the predicted lowest lying, dipole allowed excitation is ca. 1 eV higher than the experimental result. The failure of the 2-MO model is a consequence of the fact that the original HOMO and LUMO single particle basis does not provide an adequate representation for the many body processes of the electronic system.Comment: LaTeX, 12 pages, 3 eps figures included using epsf. To appear in Chemical Physics, 199

    Theory of Electric Field-Induced Photoluminescence Quenching in Disordered Molecular Solids

    Full text link
    The dynamics of excitons in disordered molecular solids is studied theoretically, taking into account migration between different sites, recombination, and dissociation into free charge carriers in the presence of an electric field. The theory is applied to interpret the results of electric field-induced photoluminescence (PL) quenching experiments on molecularly doped polymers by Deussen et al. [Chem. Phys. 207, 147 (1996)]. Using an intermolecular dissociation mechanism, the dependence of the PL quenching on the electric field strength and the dopant concentration, and the time evolution of the transient PL quenching can be well described. The results constitute additional proof of the distinct exciton dissociation mechanisms in conjugated polymer blends and molecularly doped polymers.Comment: 4 pages RevTeX, 3 Postscript figure

    Temperature and Field Dependence of the Mobility in Liquid-Crystalline Conjugated Polymer Films

    Full text link
    The transport properties of organic light-emitting diodes in which the emissive layer is composed of conjugated polymers in the liquid-crystalline phase have been investigated. We have performed simulations of the current transient response to an illumination pulse via the Monte Carlo approach, and from the transit times we have extracted the mobility of the charge carriers as a function of both the electric field and the temperature. The transport properties of such films are different from their disordered counterparts, with charge carrier mobilities exhibiting only a weak dependence on both the electric field and temperature. We show that for spatially ordered polymer films, this weak dependence arises for thermal energy being comparable to the energetic disorder, due to the combined effect of the electrostatic and thermal energies. The inclusion of spatial disorder, on the other hand, does not alter the qualitative behaviour of the mobility, but results in decreasing its absolute value.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Ab-initio calculation of the electronic and optical excitations in polythiophene: effects of intra- and interchain screening

    Get PDF
    We present an calculation of the electronic and optical excitations of an isolated polythiophene chain as well as of bulk polythiophene. We use the GW approximation for the electronic self-energy and include excitonic effects by solving the electron-hole Bethe-Salpeter equation. The inclusion of interchain screening in the case of bulk polythiophene drastically reduces both the quasi-particle band gap and the exciton binding energies, but the optical gap is hardly affected. This finding is relevant for conjugated polymers in general.Comment: 4 pages, 1 figur

    A theoretical investigation of the low lying electronic structure of poly(p-phenylene vinylene)

    Full text link
    The two-state molecular orbital model of the one-dimensional phenyl-based semiconductors is applied to poly(p-phenylene vinylene). The energies of the low-lying excited states are calculated using the density matrix renormalization group method. Calculations of both the exciton size and the charge gap show that there are both Bu and Ag excitonic levels below the band threshold. The energy of the 1Bu exciton extrapolates to 2.60 eV in the limit of infinite polymers, while the energy of the 2Ag exciton extrapolates to 2.94 eV. The calculated binding energy of the 1Bu exciton is 0.9 eV for a 13 phenylene unit chain and 0.6 eV for an infinite polymer. This is expected to decrease due to solvation effects. The lowest triplet state is calculated to be at ca. 1.6 eV, with the triplet-triplet gap being ca. 1.6 eV. A comparison between theory, and two-photon absorption and electroabsorption is made, leading to a consistent picture of the essential states responsible for most of the third-order nonlinear optical properties. An interpretation of the experimental nonlinear optical spectroscopies suggests an energy difference of ca. 0.4 eV between the vertical energy and ca. 0.8 eV between the relaxed energy, of the 1Bu exciton and the band gap, respectively.Comment: LaTeX, 19 pages, 7 eps figures included using epsf. To appear in Physical Review B, 199

    The size of electron-hole pairs in pi conjugated systems

    Get PDF
    We have performed momentum dependent electron energy-loss studies of the electronic excitations in sexithiophene and compared the results to those from parent oligomers. Our experiment probes the dynamic structure factor S(q,omega)and we show that the momentum dependent intensity variation of the excitations observed can be used to extract the size of the electron-hole pair created in the excitation process. The extension of the electron-hole pairs along the molecules is comparable to the length of the molecules and thus maybe only limited by structural constraints. Consequently, the primary intramolecular electron-hole pairs are relatively weakly bound. We find no evidence for the formation of excitations localized on single thiophene units.Comment: RevTex, 3 figures, to appear in Physical Review Letter

    Electron correlation effects in electron-hole recombination in organic light-emitting diodes

    Get PDF
    We develop a general theory of electron--hole recombination in organic light emitting diodes that leads to formation of emissive singlet excitons and nonemissive triplet excitons. We briefly review other existing theories and show how our approach is substantively different from these theories. Using an exact time-dependent approach to the interchain/intermolecular charge-transfer within a long-range interacting model we find that, (i) the relative yield of the singlet exciton in polymers is considerably larger than the 25% predicted from statistical considerations, (ii) the singlet exciton yield increases with chain length in oligomers, and, (iii) in small molecules containing nitrogen heteroatoms, the relative yield of the singlet exciton is considerably smaller and may be even close to 25%. The above results are independent of whether or not the bond-charge repulsion, X_perp, is included in the interchain part of the Hamiltonian for the two-chain system. The larger (smaller) yield of the singlet (triplet) exciton in carbon-based long-chain polymers is a consequence of both its ionic (covalent) nature and smaller (larger) binding energy. In nitrogen containing monomers, wavefunctions are closer to the noninteracting limit, and this decreases (increases) the relative yield of the singlet (triplet) exciton. Our results are in qualitative agreement with electroluminescence experiments involving both molecular and polymeric light emitters. The time-dependent approach developed here for describing intermolecular charge-transfer processes is completely general and may be applied to many other such processes.Comment: 19 pages, 11 figure
    corecore