223 research outputs found

    Solar Energetic Particle-Associated Coronal Mass Ejections Observed by the Mauna Loa Solar Observatory Mk3 and Mk4 Coronameters

    Full text link
    We report on the first comprehensive study of the coronal mass ejections (CMEs) associated with ∌\sim25 MeV solar energetic proton (SEP) events in 1980-2013 observed in the low/inner corona by the Mauna Loa Solar Observatory (MLSO) Mk3 and Mk4 coronameters. Where possible, these observations are combined with spacebased observations from the Solar Maximum Mission C/P, P78-1 SOLWIND or SOHO/LASCO coronagraphs. The aim of the study is to understand directly-measured (rather than inferred from proxies) CME motions in the low to middle corona and their association with SEP acceleration, and hence attempt to identify early signatures that are characteristic of SEP acceleration in ground-based CME observations that may be used to warn of impending SEP events. Although we find that SEP events are associated with CMEs that are on average faster and wider than typical CMEs observed by MLSO, a major challenge turns out to be determining reliable estimates of the CME dynamics in the low corona from the 3-minute cadence Mk3/4 observations since different analysis techniques can produce inconsistent results. This complicates the assessment of what early information on a possible SEP event is available from these low coronal observationsComment: To be published in Solar Physic

    Herbivory and the Resilience of Caribbean Coral Reefs: Knowledge Gaps and Implications for Management

    Get PDF
    Herbivory is a key process on coral reefs that can facilitate reef-building corals by excluding algae that otherwise negatively impact coral settlement, growth, and survivorship. Over the last several decades, coral cover on Caribbean reefs has declined precipitously. On many reefs, large structurally complex corals have been replaced by algae and other non-reef-building organisms, resulting in the collapse of physical structure and the loss of critical ecosystem services. The drivers of coral decline on Caribbean reefs are complex and vary among locations. On many reefs, populations of key herbivores have been greatly reduced by disease and overfishing, and this has resulted in the proliferation of algae that hinder coral recovery following major disturbances. Yet, evidence that increases in herbivory can promote coral recovery on Caribbean reefs has been mixed. Here, we discuss key contingencies that will modify the relationships between herbivores, algae, and corals and identify critical knowledge gaps that limit our ability to predict when and where herbivores are most likely to facilitate coral persistence and recovery. Impacts of herbivores on coral reef ecosystems will vary greatly in space and time and will depend on herbivore diversity and species identity. While there are still a large number of knowledge gaps, we make several management recommendations based on our current understanding of the processes that structure reef ecosystems. Reversing the fate of Caribbean coral reefs will require the development of integrated management strategies that simultaneously address multiple stressors in addition to the impacts of fisheries on herbivore assemblages

    Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 Coronagraphs

    Get PDF
    In order to assess the reliability and consistency of white-light coronagraph measurements, we report on quantitative comparisons between polarized brightness [pB] and total brightness [B] images taken by the following white-light coronagraphs: LASCO-C2 on SOHO, SECCHI-COR1 and -COR2 on STEREO, and the ground-based MLSO-Mk4. The data for this comparison were taken on 16 April 2007, when both STEREO spacecraft were within 3.1 deg. of Earths heliographic longitude, affording essentially the same view of the Sun for all of the instruments. Due to the difficulties of estimating stray-light backgrounds in COR1 and COR2, only Mk4 and C2 produce reliable coronal-hole values (but not at overlapping heights), and these cannot be validated without rocket flights or ground-based eclipse measurements. Generally, the agreement between all of the instruments pB values is within the uncertainties in bright streamer structures, implying that measurements of bright CMEs also should be trustworthy. Dominant sources of uncertainty and stray light are discussed, as is the design of future coronagraphs from the perspective of the experiences with these instruments

    Macroborer Presence on Corals Increases with Nutrient Input and Promotes Parrotfish Bioerosion

    Get PDF
    Bioerosion by reef-dwelling organisms influences net carbonate budgets on reefs worldwide. External bioeroders, such as parrotfish and sea urchins, and internal bioeroders, including sponges and lithophagid bivalves, are major contributors to bioerosion on reefs. Despite their importance, few studies have examined how environmental (e.g., nutrients) or biological drivers (e.g., the actions of other bioeroders) may influence bioeroder dynamics on reefs. For example, internal bioeroders could promote external bioerosion by weakening the coral skeletal matrix. Our study investigated: ( 1) whether nutrient supply influences the dynamics between internal and external bioeroders and ( 2) how the presence of a boring bivalve, Lithophaga spp., influences parrotfish bioerosion on massive Porites corals. We hypothesized that nutrient supply would be positively correlated with Lithophaga densities on massive Porites colonies, and that as bivalve density increased, the frequency and intensity of parrotfish bioerosion would increase. To test these hypotheses, we analyzed six time points over a 10-yr period from a time series of benthic images and nitrogen content of a dominant macroalga from the fringing reefs around Moorea, French Polynesia. We found Lithophaga densities were positively correlated with nitrogen availability. Further, massive Porites that are more infested with Lithophaga had both a higher probability of being bitten by parrotfish and a higher density of bite scars from parrotfishes. Our findings indicate that increasing nutrient availability may strengthen the relationship between internal and external bioeroders, suggesting that colonies at more eutrophic sites may experience higher bioerosion rates

    Scientific objectives and capabilities of the Coronal Solar Magnetism Observatory

    Full text link
    Magnetic influences increase in importance in the solar atmosphere from the photosphere out into the corona, yet our ability to routinely measure magnetic fields in the outer solar atmosphere is lacking. We describe the scientific objectives and capabilities of the COronal Solar Magnetism Observatory (COSMO), a proposed synoptic facility designed to measure magnetic fields and plasma properties in the large‐scale solar atmosphere. COSMO comprises a suite of three instruments chosen to enable the study of the solar atmosphere as a coupled system: (1) a coronagraph with a 1.5 m aperture to measure the magnetic field, temperature, density, and dynamics of the corona; (2) an instrument for diagnostics of chromospheric and prominence magnetic fields and plasma properties; and (3) a white light K‐coronagraph to measure the density structure and dynamics of the corona and coronal mass ejections. COSMO will provide a unique combination of magnetic field, density, temperature, and velocity observations in the corona and chromosphere that have the potential to transform our understanding of fundamental physical processes in the solar atmosphere and their role in the origins of solar variability and space weather.Key PointsSociety is becoming increasingly vulnerable to the effects of space weatherThe physical processes responsible for solar activity remain poorly understoodCOSMO will provide key measurements to advance our understanding of solar processes and activityPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134244/1/jgra52783_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134244/2/jgra52783.pd

    Nutrient limitation, bioenergetics and stoichiometry: A new model to predict elemental fluxes mediated by fishes

    Full text link
    Energy flow and nutrient cycling dictate the functional role of organisms in ecosystems. Fishes are key vectors of carbon (C), nitrogen (N) and phosphorus (P) in aquatic systems, and the quantification of elemental fluxes is often achieved by coupling bioenergetics and stoichiometry. While nutrient limitation has been accounted for in several stoichiometric models, there is no current implementation that permits its incorporation into a bioenergetics approach to predict ingestion rates. This may lead to biased estimates of elemental fluxes.Here, we introduce a theoretical framework that combines stoichiometry and bioenergetics with explicit consideration of elemental limitations. We examine varying elemental limitations across different trophic groups and life stages through a case study of three trophically distinct reef fishes. Further, we empirically validate our model using an independent database of measured excretion rates.Our model adequately predicts elemental fluxes in the examined species and reveals species‐ and size‐specific limitations of C, N and P. In line with theoretical predictions, we demonstrate that the herbivore Zebrasoma scopas is limited by N and P, and all three fish species are limited by P in early life stages. Further, we show that failing to account for nutrient limitation can result in a greater than twofold underestimation of ingestion rates, which leads to severely biased excretion rates.Our model improved predictions of ingestion, excretion and egestion rates across all life stages, especially for fishes with diets low in N and/or P. Due to its broad applicability, its reliance on many parameters that are well‐defined and widely accessible, and its straightforward implementation via the accompanying r‐package fishflux, our model provides a user‐friendly path towards a better understanding of ecosystem‐wide nutrient cycling in the aquatic biome.A free Plain Language Summary can be found within the Supporting Information of this article.A free Plain Language Summary can be found within the Supporting Information of this article.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/5/fec13618_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/4/fec13618-sup-0002-AppendixS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/3/fec13618-sup-0001-Summary.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/2/fec13618-sup-0003-AppendixS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/1/fec13618.pd
    • 

    corecore