1,612 research outputs found

    Translocation of the endangered apollo butterfly parnassius apollo in southern Finland

    Get PDF
    Translocation of individuals across a barrier which hampers natural colonisation is a potentially important, but debated, conservation tool for a variety of organisms in a world altered by anthropogenic influences. The apollo Parnassius apollo is an endangered butterfly whose distribution retracted dramatically during the 1900s across Europe. In Finland the apollo currently occupies only a fraction of the range of its suitable habitat and is apparently unable to re-colonise other areas. Using eggs collected from wild-caught females from the species&rsquo; current Finnish stronghold, a population was reared in order to translocate larvae into an unoccupied, but highly suitable, part of the Finnish archipelago where the species historically occurred until its national decline in the 1950s. In 2009 a restricted number of larvae (1 larva/10 host plants) were released on 25 islands in the inner, middle and outer archipelago zones. In 2010, nine islands situated in all three archipelago zones were (re)stocked with a high density of larvae (1/host plant). In 2011, apollo larval populations were found only on islands in the outer archipelago zone, which were then restocked. The species remained present here in the following two years (2012, 2013) and was hence able to sustain multi-annual population establishment without restocking. Our findings demonstrate that empty suitable habitat may in reality consist of only a few sites where population establishment is possible. Hence, starting the introduction in many sites, which are putatively suitable based on biotic and abiotic criteria derived from species&rsquo; existing populations, but then &ldquo;zooming in&rdquo; on a smaller set of promising sites showing evidence of successful establishment was key to the success of this translocation.</p

    Surface energy and stability of stress-driven discommensurate surface structures

    Full text link
    A method is presented to obtain {\it ab initio} upper and lower bounds to surface energies of stress-driven discommensurate surface structures, possibly non-periodic or exhibiting very large unit cells. The instability of the stressed, commensurate parent of the discommensurate structure sets an upper bound to its surface energy; a lower bound is defined by the surface energy of an ideally commensurate but laterally strained hypothetical surface system. The surface energies of the phases of the Si(111):Ga and Ge(111):Ga systems and the energies of the discommensurations are determined within ±0.2\pm 0.2 eV.Comment: 4 pages RevTeX. 2 Figures not included. Ask for a hard copy (through regular mail) to [email protected]

    Large Scale Electronic Structure Calculations with Multigrid Acceleration

    Full text link
    We have developed a set of techniques for performing large scale ab initio calculations using multigrid accelerations and a real-space grid as a basis. The multigrid methods permit efficient calculations on ill-conditioned systems with long length scales or high energy cutoffs. The technique has been applied to systems containing up to 100 atoms, including a highly elongated diamond cell, an isolated C60_{60} molecule, and a 32-atom cell of GaN with the Ga d-states in valence. The method is well suited for implementation on both vector and massively parallel architectures.Comment: 4 pages, 1 postscript figur

    Fracture of complex metallic alloys: An atomistic study of model systems

    Full text link
    Molecular dynamics simulations of crack propagation are performed for two extreme cases of complex metallic alloys (CMAs): In a model quasicrystal the structure is determined by clusters of atoms, whereas the model C15 Laves phase is a simple periodic stacking of a unit cell. The simulations reveal that the basic building units of the structures also govern their fracture behaviour. Atoms in the Laves phase play a comparable role to the clusters in the quasicrystal. Although the latter are not rigid units, they have to be regarded as significant physical entities.Comment: 6 pages, 4 figures, for associated avi file, see http://www.itap.physik.uni-stuttgart.de/~frohmut/MOVIES/C15.LJ.011.100.av

    Music Teacher Education at a Liberal Arts College

    Get PDF
    In 2012, a committee at a small Midwestern liberal arts college, Lake Forest College, embarked on a journey to create a music education teacher licensure major. Drawing from narrative inquiry, this article reports how the dean of faculty, education department chair, music department chair, and assistant professor of music/music education coordinator collaborated on a curricular creation. Findings from this process included (a) the created music education major, (b) each participant’s rationale for wanting the new music education major, (c) valued components of the music education major, and (d) unique elements of a music education major at a liberal arts college. Implications from this experience could be valuable for music education programs at small liberal arts colleges, those involved in university/school partnerships such as professional development schools, and those looking to advocate for their music education programs across campus

    Регіональні й глобальні наслідки незалежності Косово

    Get PDF
    У статті розглянуто регіональні й міжнародні аспекти проголошення незалежності Косово. Проаналізовано конфліктні аспекти косовської проблеми у регіональному й глобальному контекстах.В статье рассматриваются региональные и международные аспекты провозглашения независимости Косово. Проанализировано конфликтные аспекты косовской проблемы в региональном и глобальном контекстах.The article presents the regional and international aspects of Kosovo Independents. Special attention is to the conflict of Kosovo in the regional and global context

    Supercell technique for total-energy calculations of finite charged and polar systems

    Get PDF
    We study the behavior of total-energy supercell calculations for dipolar molecules and charged clusters. Using a cutoff Coulomb interaction within the framework of a plane-wave basis set formalism, with all other aspects of the method (pseudopotentials, basis set, exchange-correlation functional) unchanged, we are able to assess directly the interaction effects present in the supercell technique. We find that the supercell method gives structures and energies in almost total agreement with the results of calculations for finite systems, even for molecules with large dipole moments. We also show that the performance of finite-grid calculations can be improved by allowing a degree of aliasing in the Hartree energy, and by using a reciprocal space definition of the cutoff Coulomb interaction

    Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy

    Get PDF
    Jessica C. Mansfield ; C. Peter Winlove ; Julian Moger and Steve J. Matcher "Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy", J. Biomed. Opt. 13(4), 044020 (July 15, 2008). Copyright © 2008 Society of Photo-Optical Instrumentation EngineersSecond harmonic generation (SHG) and two-photon fluorescence (TPF) microscopy is used to image the intercellular and pericellular matrix in normal and degenerate equine articular cartilage. The polarization sensitivity of SHG can be used directly to determine fiber orientation in the superficial 10 to 20 microm of tissue, and images of the ratio of intensities taken with two orthogonal polarization states reveal small scale variations in the collagen fiber organization that have not previously been reported. The signal from greater depths is influenced by the birefringence and biattenuance of the overlying tissue. An assessment of these effects is developed, based on the analysis of changes in TPF polarization with depth, and the approach is validated in tendon where composition is independent of depth. The analysis places an upper bound on the biattenuance of tendon of 2.65 x 10(-4). Normal cartilage reveals a consistent pattern of variation in fibril orientation with depth. In lesions, the pattern is severely disrupted and there are changes in the pericellular matrix, even at the periphery where the tissue appears microscopically normal. Quantification of polarization sensitivity changes with depth in cartilage will require detailed numerical models, but in the meantime, multiphoton microscopy provides sensitive indications of matrix changes in cartilage degeneration

    Estimation of articular cartilage properties using multivariate analysis of optical coherence tomography signal

    Get PDF
    SummaryObjectiveThe aim was to investigate the applicability of multivariate analysis of optical coherence tomography (OCT) information for determining structural integrity, composition and mechanical properties of articular cartilage.DesignEquine osteochondral samples (N = 65) were imaged with OCT, and their total attenuation and backscattering coefficients (μt and μb) were measured. Subsequently, the Mankin score, optical density (OD) describing the fixed charge density, light absorbance in amide I region (Aamide), collagen orientation, permeability, fibril network modulus (Ef) and non-fibrillar matrix modulus (Em) of the samples were determined. Partial least squares (PLS) regression model was calculated to predict tissue properties from the OCT signals of the samples.ResultsSignificant correlations between the measured and predicted mean collagen orientation (R2 = 0.75, P < 0.0001), permeability (R2 = 0.74, P < 0.0001), mean OD (R2 = 0.73, P < 0.0001), Mankin scores (R2 = 0.70, P < 0.0001), Em (R2 = 0.50, P < 0.0001), Ef (R2 = 0.42, P < 0.0001), and Aamide (R2 = 0.43, P < 0.0001) were obtained. Significant correlation was also found between μb and Ef (ρ = 0.280, P = 0.03), but not between μt and any of the determined properties of articular cartilage (P > 0.05).ConclusionMultivariate analysis of OCT signal provided good estimates for tissue structure, composition and mechanical properties. This technique may significantly enhance OCT evaluation of articular cartilage integrity, and could be applied, for example, in delineation of degenerated areas around cartilage injuries during arthroscopic repair surgery
    corecore