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Estimation of articular cartilage properties using multivariate analysis
of optical coherence tomography signal
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Objective: The aim was to investigate the applicability of multivariate analysis of optical coherence to-
mography (OCT) information for determining structural integrity, composition and mechanical proper-
ties of articular cartilage.
Design: Equine osteochondral samples (N ¼ 65) were imaged with OCT, and their total attenuation and
backscattering coefficients (mt and mb) were measured. Subsequently, the Mankin score, optical density
(OD) describing the fixed charge density, light absorbance in amide I region (Aamide), collagen orientation,
permeability, fibril network modulus (Ef) and non-fibrillar matrix modulus (Em) of the samples were
determined. Partial least squares (PLS) regression model was calculated to predict tissue properties from
the OCT signals of the samples.
Results: Significant correlations between the measured and predicted mean collagen orientation
(R2 ¼ 0.75, P < 0.0001), permeability (R2 ¼ 0.74, P < 0.0001), mean OD (R2 ¼ 0.73, P < 0.0001), Mankin
scores (R2 ¼ 0.70, P < 0.0001), Em (R2 ¼ 0.50, P < 0.0001), Ef (R2 ¼ 0.42, P < 0.0001), and Aamide (R2 ¼ 0.43,
P < 0.0001) were obtained. Significant correlation was also found between mb and Ef (r ¼ 0.280, P ¼ 0.03),
but not between mt and any of the determined properties of articular cartilage (P > 0.05).
Conclusion: Multivariate analysis of OCT signal provided good estimates for tissue structure, composition
and mechanical properties. This technique may significantly enhance OCT evaluation of articular cartilage
integrity, and could be applied, for example, in delineation of degenerated areas around cartilage injuries
during arthroscopic repair surgery.

© 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Articular cartilage injury can initiate development of osteoar-
thritis (OA) in both human and animal joints1,2. As a consequence to
injury, chondrocytes of articular cartilage may die or get damaged,
cartilage matrix disruption occurs, and proteoglycan (PG) content
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decreases, initiating the development of post-traumatic OA1. The
superficial zone of cartilage is the initial zone inwhich degenerative
changes are typically encountered. In the early stage of cartilage
degeneration tissue water content increases and the collagen fibrils
are disorganized3. These changes further lead to increased
permeability and decreased stiffness of articular cartilage.

Several surgical techniques, (e.g., microfracturing and tissue and
cell transplantation) are used to repair cartilage injuries and pre-
vent the development of post-traumatic OA4. The choice for the
optimal repair technique is based on the location and size of the
lesion5, which are usually visually assessed during arthroscopy.
However, the detection of early-stage degenerative changes in tis-
sue surrounding the lesion, by means of arthroscopic examination,
is difficult6,7. To improve treatment planning, it would be beneficial
td. All rights reserved.
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Fig. 1. In the rotational scanning geometry, the OCT system obtains 504 radial scan
lines during one 360� revolution to create a cross-sectional image of the sample. The
imaging speed is 100 cross-sectional images per second.
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to have a more accurate, high-resolution arthroscopic technique for
diagnosing early-stage degeneration around injuries and to delin-
eate the optimal cartilage region for repair. Identification of early,
potentially reversible changes in articular cartilage would also be
essential for development of disease-modifying treatment
methods8.

Optical coherence tomography (OCT), an arthroscopically appli-
cable technique, provides adequate resolution (~10e20 mm) for
detection and assessment of articular cartilage lesions9,10.
Morphological features of cartilage surface observed in OCT images
agree with the ones found in histological investigation11. Further-
more, abnormal organization of collagen fibrils can be detected as a
lack of birefringence using polarization sensitive OCT12. OCT imag-
ing is based on the measurement of intensity of the light back-
scattered fromdifferent depths of the tissue. Themeasured intensity
depends on light attenuation in the tissue and, at each depth of the
tissue, on the amount of light scattering directed to the detector.
Microscopic changes in composition and structure of tissues lead to
changes in attenuation and scattering properties13. Early stage
degenerative changes in articular cartilage, like depletion of PGs,
could possibly be detected by measuring total attenuation (mt) and
backscattering (mb) coefficients with OCT. To the authors’ knowl-
edge, the differences in mt or mb between normal and degenerated
articular cartilage have not been reported. It is known, though, that
attenuation is weaker in repair tissue than in native cartilage14.
Further, the decrease in collagen and chondrocyte contents has been
found to decrease light attenuation in agarose scaffolds15.

Due to its layered nature, articular cartilage exhibits depth-
dependent light backscattering and attenuation properties. There-
fore, the mt and mb of the total cartilage thickness layer may not
optimally represent this tissue and may not be sensitive enough to
detect early stage degeneration. Thus, an alternative analysis
approach for OCT data is required. In the present study, the appli-
cability of multivariate partial least squares (PLS) regression to
analyseOCTsignal andpredict cartilagedegeneration is studied. This
analytical technique has been applied for the analysis of cartilage
spectroscopic data16,17. The method is used to obtain those features
of the multivariate input data (predictor variable) that explain most
of the variation in the reference data (response variable) of the
sample18. We hypothesize that with PLS regression modelling we
could obtain a more accurate approximation of articular cartilage
properties as compared to measurement of bulk mt and mb.

Methods

Sample preparation

Osteochondral samples were prepared from meta-
carpophalangeal joints of healthy, skeletally mature horses (N¼ 13)
obtained from a slaughterhouse. Either left or right joint was ob-
tained from eight horses and both from five horses. The horses had
a variety of chondral lesions. Osteochondral samples (N ¼ 65) were
obtained from 1 to 6 anatomical locations within each joint,
namely; the tips of the medial and lateral eminences of the first
phalanx (N ¼ 34), the opposing sites on the medial and lateral
condyles (N ¼ 15), and the sagittal ridge of the metacarpal bone
(N ¼ 14). The samples were cut into osteochondral blocks with a
minimum surface area of 10� 10mm2 and the area of interest (e.g.,
lesion) located in the center.

OCT imaging

The osteochondral samples were imaged using OCT (wave-
length 1305 ± 55 nm, axial resolution <20 mm, lateral resolution
25e60 mm; Ilumien PCI Optimization System, St. Jude Medical, St.
Paul, MN, USA). During the OCT imaging the samples were
immersed in phosphate buffered saline (PBS). The OCT system has a
rotating scanning geometry providing cross-sectional images
(thickness ¼ 0.1 mm). Each cross-sectional image consists of 504
radial scan lines obtained during one revolution (Fig. 1). The system
measures the intensity of the light backscattered at different depths
in each scanning direction. Five adjacent cross-sectional images
were recorded from each sample. The cartilage surface was auto-
matically detected from the cross-sections, while the cartila-
geebone interface was manually determined (by PP). Cartilage
thickness in the samples varied between 0.40 mm and 1.39 mm. An
average depthwise intensity curve was calculated for an analysis
window with a width of 21 scan lines and a height matching the
cartilage thickness. Subsequently, average intensity curves of the
five cross-sections in each samplewere averaged. The first 5% of the
curves were excluded during the analyses to avoid specular
reflection at the articular surface.

Biomechanical properties

Biomechanical properties of the samples were determined by
means of indentation testing. The test was conducted using a
custom-made material testing system (resolution for force and
deformation, 5 mN and 0.1 mm, respectively)19. Cartilage thickness
was measured from the OCT image of the sample. The sample was
submerged in PBS and a cylindrical plane-ended indenter with a
diameter of 530 mmwas driven into contact with the sample on the
same location where the OCT imaging was conducted. The contact
and full recovery of deformation were ensured by indenting the
sample 5% of its thickness five times. Then, a stress-relaxation
indentation test consisting of two 5% strain steps was performed.
Strain rate was 100%/s relative to the thickness of the cartilage.
Equilibrium was assumed to be achieved when the slope of relax-
ation rate was less than 10 Pa/min.

Abaqus (V6.10-1, Dassault Syst�emes, Providence, RI, USA) and
Matlab (2012a, The MathWorks Inc., Natick, MA, USA) were
employed to calculate cartilage biomechanical parameters by
fitting an axisymmetric fibril-reinforced poroelastic finite element
model to the experimental stress-relaxation data20e22. Cartilage
was modelled using axisymmetric 4-node continuum pore pres-
sure elements (CAX4P). An elastic fibrillar matrix represented the
collagen network and non-fibrillar matrix represented primarily
PGs and fluid. The fibrillar matrix was described with organized
primary fibrils and randomly organized secondary fibrils20. The
indenter was modelled as rigid and the cartilage-indenter contact
was assumed to be frictionless and impermeable. The cartila-
geebone interfacewas fixed in all directions. The cartilage edge and
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the surface not in contact with the indenter were assumed to be
fully permeable (zero pore pressure). Mechanical behaviour of the
collagen network was expressed with the fibril network modulus
(Ef), while non-fibrillar matrix modulus (Em) and permeability
represented the PG/fluid complex. Fluid fraction (80%) and the
Poisson's ratio of the non-fibrillar matrix (0.42) were fixed in the
model22,23, whereas Ef, Em and permeability were obtained by
minimizing the mean square error between the reaction forces in
the experiment and finite element model. Since the first step was
considered as a pre-strain, the optimizationwas performed only for
the second step.

Histology

After indentation testing, the samples were stored in a freezer
(�20�C). For histological and spectroscopical analyses, the osteo-
chondral samples were thawed, immersed in formalin for at least
48 h, and then decalcified in ethylenediaminetetraacetic acid.
After further processing, three Safranin-O stained sections
(thickness ¼ 3 mm) for histological evaluation and three unstained
sections (thickness ¼ 5 mm) for spectroscopical analyses were
prepared from the measurement site of each sample.

The stained sections were examined with a light microscope
(Axio Imager M2, Carl Zeiss MicroImaging, Jena, Germany). Histo-
logical integrity of the samples were evaluated from their images
by assigningMankin scores24. The images of the three sections from
each sample were blindly coded and scored by three investigators
(NtM, JT, and VT). The final scorewas calculated as an average of the
scores rounded to the nearest integer. Based on Mankin scores, the
samples were further divided into two groups by the severity of the
degeneration; from no to mild degeneration (Mankin scores 0e6)
and frommoderate to severe degeneration (Mankin scores 7e14)25.

Depthwise PG distribution (fixed charge density) was estimated
from optical density (OD) of the grayscale images of Safranin-O
stained sections captured with a light microscope and a CCD
camera (SenSys, Photometrics Inc., USA)26. The final OD distribu-
tion was obtained as the average OD distribution of the three
sections.

Fourier transform infrared spectroscopy and polarized light
microscopy

Light absorbance in amide I region (Aamide; 1594e1720 cm�1),
representative of the collagen content, was assessed as a mean
absorbance distribution in the three unstained sections using
Fourier transform infrared spectroscopy (FTIR; Spotlight 300 FTIRI,
Perkin Elmer, Shelton, CT, USA) analysis27. Collagen orientationwith
respect to cartilage surface direction was determined by means of
polarized light microscopy (Ortholux II POL; Leitz Wetzlar, Wetzlar,
Germany) based on Stokes parameters28,29.

OCT analysis: total attenuation and backscattering coefficient

mt and mb were determined by fitting the mean depthwise OCT
intensity curve, I(d), into the following equation30:

IðdÞf ffiffiffiffiffiffi
mb

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
d�d0
z0

�2

þ 1

s expð�mtdÞ; (1)

where d is the probing depth in cartilage, d0 beam focus position
and z0 the apparent Rayleigh length. Prior to fitting, the OCT system
was calibrated using suspension series of water and polystyrene
spheres (diameter¼ 5 mm; Phosphores Inc., Hopkinton, MA, USA).15
OCT analysis: PLS regression multivariate analysis

PLS regression models were developed to estimate cartilage
properties based on depth-dependent OCT signal. Multivariate PLS
regression is an analytical technique for relating potentially corre-
lated and noisy predictor variables to one or several response var-
iables by finding a linear regression between them in a new space18.
Briefly, developed and validated PLS regression models that opti-
mize the relationship between the predictor and response variables
are used to predict the response variables of new samples from
predictor variables. In the present study, the OCT intensity curves
were smoothed using a fourth degree Savitzky-Golay filter and the
second derivatives of the smoothed intensity curves were used as
predictor variables in the PLS analyses. Mankin score, severity of
degeneration, Ef, Em, permeability and averages of OD, Aamide, and
collagen orientationwithin thewhole cartilage layer, the superficial
zone (10% of cartilage thickness), the middle zone (15%) and the
deep zone (75%) of the cartilage served as response variables.

Leave-one-out cross-validation was computed in order to
determine the optimal number of PLS components of the models31.
Too few components may result in under-fitting, while too many
may yield over-fitted models. In leave-one-out cross-validation
each sample is left out one by one and the other samples are used to
predict the response property of the sample left out. The criteria for
optimal model selection were based on the model with the highest
coefficient of determination (R2) and the lowest root mean square
error of cross-validation (RMSECV). Model performance was eval-
uated by predicting the cartilage properties of the samples from
their OCT signals using the created model32,33. The root mean
square error of prediction (RMSEP) was calculated from the devi-
ation between the predicted and true response parameter values (ŷ
and y, respectively):

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðbyi � yiÞ2
n

s
; (2)

where n is the number of the samples. For data pre-processing and
multivariate analyses, custom-written software utilizing the
SIMPLS algorithm in Matlab (2014a; MathWorks, Inc., Natic, MA,
USA) was used.

Statistical analyses

Relationships of mt and mb with other determined properties of
articular cartilage were evaluated by calculating Spearman's rank
correlation coefficients (IBM SPSS Statistics 19, SPSS Inc., Chicago,
USA). A monotonic relationship of mt and mb with the cartilage
properties was assumed.

Results

Mean (standard deviation) for mt and mb of the samples were
2.2 mm�1 (1.1 mm�1) and 13.4 mm�1 (7.9 mm�1), respectively.
Mean and standard deviation of Mankin score, permeability, Em, Ef,
OD, Aamide and collagen orientation are presented in Table I. A
significant linear correlation was found between mb and Ef, but not
between mb and the Mankin score, k, Em, OD, Aamide or collagen
orientation (Table II). The mt values did not correlate significantly
with any of the cartilage properties (Table II).

In the PLS analyses, three to seven PLS components were found
to be optimal in the regression models created between OCT in-
tensity curve and the different properties of articular cartilage.
Correlations between the measured properties of articular cartilage
and those predicted using PLS models were high for Mankin score



Table I
Mean and standard deviation for various properties of articular cartilage (response variables) and the PLS regression statistics for prediction of the variables based on
depthwise OCT intensity curves

Response variable Zone Mean of response variable Std of response variable Number of components RMSEP R2

Mankin score All 3.5 2.6 5 1.4 0.70
Permeability ( � 10�15 m4N�1s�1) All 5.5 8.7 5 4.4 0.74
Em (MPa) All 0.25 0.24 3 0.17 0.50
Ef (MPa) All 1.74 1.18 3 0.89 0.42
OD (arb. unit) All 1.42 0.37 5 0.16 0.73

Superficial 0.67 0.40 6 0.18 0.79
Middle 1.20 0.55 6 0.25 0.79
Deep 1.57 0.35 6 0.16 0.80

Aamide (arb. unit) All 42.0 4.9 4 3.7 0.43
Superficial 23.6 4.6 5 2.7 0.64
Middle 30.7 5.0 5 3.2 0.57
Deep 46.7 5.3 5 8.8 0.56

Collagen orientation (deg) All 66.2 14.4 7 7.1 0.75
Superficial 35.9 17.0 4 11.3 0.55
Middle 58.7 16.1 4 10.6 0.56
Deep 71.7 16.8 4 11.8 0.50

Std ¼ standard deviation, RMSEP ¼ root mean square error in prediction, R2 ¼ coefficient of determination, Em ¼ non-fibrillar matrix modulus, Ef ¼ fibril network modulus,
OD ¼ optical density, Aamide ¼ FTIR absorbance in amide I region.

Table II
Linear correlations between themeasured compositional, structural and biomechanical properties of articular cartilage and its light attenuation and backscattering coefficients
(mt and mb, respectively) indicated by Spearman's rank correlation coefficients (rho) and the corresponding P-values

Mankin score Permeability ( � 10�15 m4N�1s�1) Em (MPa) Ef (MPa) OD (arb. unit) Aamide (arb. unit) Collagen orientation (deg)

mt (mm�1) rho ¼ 0.019
P ¼ 0.88

rho ¼ �0.043
P ¼ 0.74

rho ¼ 0.107
P ¼ 0.41

rho ¼ 0.093
P ¼ 0.47

rho ¼ �0.021
P ¼ 0.87

rho ¼ 0.071
P ¼ 0.58

rho ¼ 0.129
P ¼ 0.31

mb (mm�1) rho ¼ �0.026
P ¼ 0.84

rho ¼ �0.128
P ¼ 0.33

rho ¼ 0.166
P ¼ 0.20

rho ¼ 0.280
P ¼ 0.03

rho ¼ 0.086
P ¼ 0.50

rho ¼ 0.241
P ¼ 0.06

rho ¼ 0.138
P ¼ 0.28

Em ¼ non-fibrillar matrix modulus, Ef ¼ fibril network modulus, OD ¼ optical density, Aamide ¼ FTIR absorbance in amide I region, mt ¼ total attenuation coefficient,
mb ¼ backscattering coefficient.
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(R2 ¼ 0.70, RMSEP ¼ 1.4), permeability (R2 ¼ 0.74,
RMSEP ¼ 4.4 � 10�15 m4N�1s�1), bulk OD (R2 ¼ 0.73, RMSEP ¼ 0.16
arb. unit) and OD in different zones of the articular cartilage
(R2 � 0.79, RMSEP � 0.25 arb. unit) (Table I). Correlation between
the predicted and measured bulk collagen orientation was good
(R2� 0.75, RMSEP¼ 7.1�), but even if the number of PLS coefficients
was further reduced, the error in cross-validation remained high
compared to the standard deviation of the measured orientation
values. Moderate and significant correlations (R2 < 0.70, P < 0.0001)
were found between the measured and predicted Em, Ef and Aamide
of the articular cartilage samples (Table I). The relations between
the predicted and measured bulk properties of the samples are
presented in Fig. 2. BlandeAltman plots show the agreement be-
tween the measured and predicted properties of the samples
(Fig. 3). Nine of all samples were initially grouped into the category
of moderate to severe degeneration based on their Mankin scores.
Six of those samples were similarly diagnosed when the severity of
degeneration was predicted using the PLS model.
Discussion

The diagnostic value of conventional arthroscopic evaluation is
limited when assessing early stage cartilage degeneration due to
subjectivity6. The application of OCT under arthroscopic guidance
provides more detailed images of the cartilage lesions and en-
hances the reproducibility of cartilage lesion scoring34. In addition,
OCT could also be used to investigate microstructural tissue
changes. The present study demonstrates the diagnostic potential
of OCT via multivariate analysis, in assessment of degenerative
changes in the composition, structure, and mechanical properties
of articular cartilage.
Based on the results, the bulk attenuation and backscattering
parameters, determined from OCT signal, were not sensitive
enough to detect small compositional changes in articular cartilage.
Both collagen and chondrocytes scatter light and affect the OCT
signal15. However, possible changes in their content during
degeneration were not revealed by measuring mt or mb. The sensi-
tivity of the bulk attenuation coefficient for early osteoarthritic
changes in articular cartilage was also questioned by Nebelung
et al.35 This supports the choice of multivariate analysis of the OCT
signal for detailed diagnostic purposes.

The PLS models constructed based on the measured OCT signals
provided high correlation especially between themeasured and the
predicted values of Mankin score, permeability, OD, and bulk
collagenorientation. All the sampleshavingnoormild degeneration
were correctly classified by predicting theirMankin scores, whereas
three out of nine samples were misclassified to have no to mild
degeneration as opposed to moderate to severe degeneration.
Permeability does not have direct effect on the optical properties of
articular cartilage, but it is a good measure of many simultaneous
changes in composition and structure of the tissue during degen-
eration. The permeability of articular cartilage relates to the PG
content of the tissue36. Therefore, the contribution of PGs to OCT
signal may be the reason for the correlation between the measured
andpredictedpermeability. In the present study, ODwas used as the
measureof PGcontent. Earlier, PGshavenotbeen showntoaffect the
birefringence37 or surface reflection38 when measured by OCT.
However, the present high correlation between measured OD and
OD predicted by the PLSmodel might indicate a contribution of PGs
to OCT light backscattering. The influence of PGs on OCT signal is of
great interest as PG depletion, in addition to disorganization of
collagen matrix, is one of the first signs of cartilage
degeneration39,40.



Fig. 2. The measured bulk properties of articular cartilage and those predicted from OCT signal using PLS regression models. (a) Mankin score, (b) permeability, (c) non-fibrillar
matrix modulus (Em) (d) fibril network modulus (Ef) (e) bulk OD (f) bulk FTIR absorbance in amide I region (Aamide) and (g) bulk collagen orientation.
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It is worth noting that the OCT system used in this study was not
designed for measurement of birefringence. Hence, the significant
relation between the OCT signal and collagen orientation may
result, in part, from varying scattering properties of fibrils oriented
at different angles as well as from other compositional and struc-
tural properties that change simultaneously with disorganization
of the collagen network. However, the measurement of birefrin-
gence would be a valuable addition for identification of early



Fig. 3. BlandeAltman plots representing the average and difference of measured and predicted articular cartilage (a) Mankin score, (b) permeability, (c) non-fibrillar matrix
modulus (Em) (d) fibril network modulus (Ef) (e) bulk OD (f) bulk FTIR absorbance in amide I region (Aamide) and (g) bulk collagen orientation.
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cartilage degeneration7. Additionally, the use of an ultra-high res-
olution OCT system could improve the detection of the depthwise
changes in the amount of small scattering components. The use of
higher resolution would also increase the number of predictor
variables in the model, and could possibly improve the accuracy of
the PLS predictive model.

The relationship between the measured and predicted FTIR
absorbance in amide I region (i.e., collagen content) was not strong
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(R2 ¼ 0.43). Mechanical properties of articular cartilage are related
to collagen matrix properties20,41. Therefore, the relation of OCT
signal to fibril network modulus may reflect its relation to collagen
content and organization. In early stage of degeneration, the
collagen content abides although the fibril organization changes3.
Therefore, the assessment of collagen content may be of minor
importance when differentiating healthy cartilage from areas with
signs of the earliest stage of degeneration.

Due to the limited light penetration, OCT imaging cannot be
conducted non-invasively, but is a useful tool in arthroscopies9,10.
Presently, with thin equine cartilage, the prediction ability of the
PLS models was similar for each of the three cartilage zones. In OCT
analysis, the structural and compositional properties in the super-
ficial zone of articular cartilage may have the highest diagnostic
value. The limited penetration depth (1e2mm42) of the light might
hinder the ability to analyse middle and deep zones of thick human
articular cartilage. By choosing adequate central wavelength for the
OCT light, the light penetration could be marginally improved43.
However, the optimal choice of wavelength is a sensitive balance
between increase in water absorption and decrease of scattering44.
Further studies with human cartilage are needed to investigate if
the evaluation of cartilage only to depth of 1e2 mm is sufficient for
the diagnostics.

Following our hypothesis, multivariate analyses of depthwise
optical intensity signal from OCT images of articular cartilage has
potential to provide information on tissue compositional, structural
and mechanical properties that are otherwise non-accessible from
bulk attenuation and backscattering properties. However,
BlandeAltman analysis showed a higher accuracy of the models for
cartilagewith no or mild degenerative changes. This arises from the
under-representation of cartilage with advanced degeneration in
the sample set. The errors obtained in the present study should be
reduced for research purposes, but could be satisfactory for di-
agnostics as small errors may not affect clinical decisions. Never-
theless, the approach needs to be further validated and optimized
before it can be applied clinically. For example, test set validation,
which uses a set of test samples independent of the training set,
could be used to further validate the performance of the multi-
variate models developed in this study. Further, doubling the
amount of samples in training of the PLS model may improve the
accuracy of the assessment and would enable use of the test set
validation18. Adequate diagnostic accuracy and good intra- and
inter-observer agreements in bothmodel creation and prediction of
cartilage properties are required, and they need to be thoroughly
evaluated.

Quantitative OCT analysis could improve the evaluation of
articular cartilage integrity. After careful calibration and validation
of the PLS model, the use of the model for prediction of cartilage
properties could be fast and feasible in clinical use. The present
technique might be used in arthroscopic surgery in order to
delineate degenerated areas around articular cartilage lesions and
to aid the selection of the optimal treatment method.
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