522 research outputs found

    Function theory on metabelian solvmanifold

    Get PDF
    AbstractThe Laplace operators for metabelian solvmanifolds are used to describe certain spaces of C∞ functions on metabelian solvmanifolds of interest in harmonic analysis

    Large-D Expansion from Variational Perturbation Theory

    Full text link
    We derive recursively the perturbation series for the ground-state energy of the D-dimensional anharmonic oscillator and resum it using variational perturbation theory (VPT). From the exponentially fast converging approximants, we extract the coefficients of the large-D expansion to higher orders. The calculation effort is much smaller than in the standard field-theoretic approach based on the Hubbard-Stratonovich transformation.Comment: Author Information under http://hbar.wustl.edu/~sbrandt and http://www.theo-phys.uni-essen.de/tp/ags/pelster_di

    Mastering the Master Field

    Get PDF
    The basic concepts of non-commutative probability theory are reviewed and applied to the large NN limit of matrix models. We argue that this is the appropriate framework for constructing the master field in terms of which large NN theories can be written. We explicitly construct the master field in a number of cases including QCD2_2. There we both give an explicit construction of the master gauge field and construct master loop operators as well. Most important we extend these techniques to deal with the general matrix model, in which the matrices do not have independent distributions and are coupled. We can thus construct the master field for any matrix model, in a well defined Hilbert space, generated by a collection of creation and annihilation operators---one for each matrix variable---satisfying the Cuntz algebra. We also discuss the equations of motion obeyed by the master field.Comment: 46 pages plus 11 uuencoded eps figure

    Critical phenomena and quantum phase transition in long range Heisenberg antiferromagnetic chains

    Full text link
    Antiferromagnetic Hamiltonians with short-range, non-frustrating interactions are well-known to exhibit long range magnetic order in dimensions, d2d\geq 2 but exhibit only quasi long range order, with power law decay of correlations, in d=1 (for half-integer spin). On the other hand, non-frustrating long range interactions can induce long range order in d=1. We study Hamiltonians in which the long range interactions have an adjustable amplitude lambda, as well as an adjustable power-law 1/xα1/|x|^\alpha, using a combination of quantum Monte Carlo and analytic methods: spin-wave, large-N non-linear sigma model, and renormalization group methods. We map out the phase diagram in the lambda-alpha plane and study the nature of the critical line separating the phases with long range and quasi long range order. We find that this corresponds to a novel line of critical points with continuously varying critical exponents and a dynamical exponent, z<1.Comment: 27 pages, 12 figures. RG flow added. Final version to appear in JSTA

    The stability of a cubic fixed point in three dimensions from the renormalization group

    Full text link
    The global structure of the renormalization-group flows of a model with isotropic and cubic interactions is studied using the massive field theory directly in three dimensions. The four-loop expansions of the \bt-functions are calculated for arbitrary NN. The critical dimensionality Nc=2.89±0.02N_c=2.89 \pm 0.02 and the stability matrix eigenvalues estimates obtained on the basis of the generalized Padeˊ\acute{\rm e}-Borel-Leroy resummation technique are shown to be in a good agreement with those found recently by exploiting the five-loop \ve-expansions.Comment: 18 pages, LaTeX, 5 PostScript figure

    Quark Confinement in the Deconfined Phase

    Full text link
    In cylindrical volumes with C-periodic boundary conditions in the long direction, static quarks are confined even in the gluon plasma phase due to the presence of interfaces separating the three distinct high-temperature phases. An effective "string tension" is computed analytically using a dilute gas of interfaces. At T_c, the deconfined-deconfined interfaces are completely wet by the confined phase and the high-temperature "string tension" turns into the usual string tension below T_c. Finite size formulae are derived, which allow to extract interface and string tensions from the expectation value of a single Polyakov loop. A cluster algorithm is built for the 3-d three-state Potts model and an improved estimator for the Polyakov loop is constructed, based on the number of clusters wrapping around the C-periodic direction of the cluster.Comment: 3 pages, Latex, talk presented at Lattice '97, to appear in Nucl. Phys. B (Proc. Suppl.), uses espcrc2.st

    Thurston equivalence of topological polynomials

    Get PDF
    We answer Hubbard's question on determining the Thurston equivalence class of ``twisted rabbits'', i.e. images of the ``rabbit'' polynomial under n-th powers of the Dehn twists about its ears. The answer is expressed in terms of the 4-adic expansion of n. We also answer the equivalent question for the other two families of degree-2 topological polynomials with three post-critical points. In the process, we rephrase the questions in group-theoretical language, in terms of wreath recursions.Comment: 40 pages, lots of figure

    Antiferromagnetic 4-d O(4) Model

    Get PDF
    We study the phase diagram of the four dimensional O(4) model with first (beta1) and second (beta2) neighbor couplings, specially in the beta2 < 0 region, where we find a line of transitions which seems to be second order. We also compute the critical exponents on this line at the point beta1 =0 (F4 lattice) by Finite Size Scaling techniques up to a lattice size of 24, being these exponents different from the Mean Field ones.Comment: 26 pages LaTeX2e, 7 figures. The possibility of logarithmic corrections has been considered, new figures and tables added. Accepted for publication in Physical Review

    The Large-NN Limit of the Two-Hermitian-matrix model by the hidden BRST method

    Full text link
    This paper discusses the large N limit of the two-Hermitian-matrix model in zero dimensions, using the hidden BRST method. A system of integral equations previously found is solved, showing that it contained the exact solution of the model in leading order of large NN.Comment: 19 pages, Latex,CERN--TH-6531/9

    Critical exponents from parallel plate geometries subject to periodic and antiperiodic boundary conditions

    Full text link
    We introduce a renormalized 1PI vertex part scalar field theory setting in momentum space to computing the critical exponents ν\nu and η\eta, at least at two-loop order, for a layered parallel plate geometry separated by a distance L, with periodic as well as antiperiodic boundary conditions on the plates. We utilize massive and massless fields in order to extract the exponents in independent ultraviolet and infrared scaling analysis, respectively, which are required in a complete description of the scaling regions for finite size systems. We prove that fixed points and other critical amounts either in the ultraviolet or in the infrared regime dependent on the plates boundary condition are a general feature of normalization conditions. We introduce a new description of typical crossover regimes occurring in finite size systems. Avoiding these crossovers, the three regions of finite size scaling present for each of these boundary conditions are shown to be indistinguishable in the results of the exponents in periodic and antiperiodic conditions, which coincide with those from the (bulk) infinite system.Comment: Modified introduction and some references; new crossover regimes discussion improved; Appendixes expanded. 48 pages, no figure
    corecore