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1. Introduction

Consider the “rabbit” polynomial fR(z)≈z2+(−0.1226+0.7449i), whose critical point 0
is on a periodic orbit of length 3. Up to affine transformations, there are exactly
two other polynomials with the same action on post-critical points (with the same
ramification graph), called the “corabbit” fC≈z2+(−0.1226−0.7449i) and the “airplane”
fR≈z2−1.7549. Furthermore, by a result of W. Thurston (see below), every branched
covering with the same ramification graph is equivalent to precisely one of fR, fC or fA.

Consider now a Dehn twist T of C around the two non-critical values of the fR-orbit
of 0. The map TmfR is again a branched covering, and it has the same ramification graph
as fR; therefore it is equivalent (i.e. conjugate up to homotopies) to one of fR, fC or fA.
Which one?

This question was asked by J. Hubbard; see [9]. The answer, as we shall show
(Theorem 4.7), is the following. Write m in base 4, as

m=
∞∑

i=0

mi4i,

with mi∈{0, 1, 2, 3} and almost all mi=0 if m is non-negative, and almost all mi=3 if
m is negative. If one of the mi’s is 1 or 2, then TmfR is equivalent to fA. Otherwise, it
is equivalent to fR if m is non-negative, and to fC if m is negative.

For example, T−1fR and T−4fR are equivalent to fC , since

−1 = ... 333 and −4 = ... 3330.

Consider now the polynomial fi=z2+i, whose finite critical point has orbit

0 7−! i 7−! i−1 7−!−i 7−! i−1.

A branched covering with that ramification graph is either equivalent to fi, or to f−i, or
is not equivalent to any rational map (it is obstructed). A. Douady and J. Hubbard ask
([4, p. 293]) to determine, as a function of a Dehn twist D, when fi ·D is obstructed, and
if not, whether it is equivalent to fi or to f−i. The answer (see Theorem 6.1) depends
on the image of D in a finite group of order 100.

Thurston’s theorem does not tell us when two obstructed maps are equivalent. We
may however also answer that question: Corollary 6.11 shows that there are infinitely
many inequivalent obstructed maps with the same ramification graph as fi, and gives an
algorithm to determine equivalence among obstructed maps.

The first construction of infinitely many non-equivalent Thurston maps with the
same ramification graph was presented in [3, Proposition 2.12].
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1.1. Thurston’s theorem

Consider more generally a branched covering f of S2, with set of critical points Cf , and
let Pf be its post-critical set :

Pf =
⋃
n>1

f �n(Cf ).

Let us suppose that Pf is finite, in which case f is called post-critically finite, or a
Thurston map. Two Thurston maps f and g are equivalent if there exist orientation-
preserving homeomorphisms φ0, φ1: (S2, Pf )!(S2, Pg) such that φ0 and φ1 are isotopic
relative to Pf , and φ0f=gφ1. Recall also that a branched covering is a topological
polynomial if f−1(∞)={∞}.

A multicurve is a system Γ={γ1, ..., γn} of simple, closed, disjoint, non-homotopic,
non-peripheral curves on S2\Pf . Here a curve is called peripheral if one of the two
parts into which it divides the sphere contains less than two post-critical points. The
multicurve Γ is stable if for all γ∈Γ, all non-peripheral elements of f−1(γ) are homotopic
to elements of Γ. There is then an induced map

fΓ:RΓ−!RΓ,

γi 7−!
∑

δ∈f−1(γi)

[δ]
deg f |δ

,

where [δ] is, if it exists, the element of Γ homotopic to δ, and is 0 otherwise.

Theorem 1.1. (Thurston’s criterion; see [4]) A Thurston map f with hyperbolic
orbifold(1) is equivalent to a rational function if and only if the spectral radius of fΓ is
less than 1 for all stable multicurves Γ.

In that case, the rational function equivalent to f is unique up to conjugation by a
Möbius transformation.

A stable multicurve Γ is an obstruction if the spectral radius of fΓ is greater than
or equal to 1. Therefore, Thurston’s theorem says that a Thurston map is equivalent to
a rational map if and only if there are no obstructions.

If the Thurston map f is a topological polynomial, then the structure of obstructions
is better understood. Namely, every Thurston obstruction of a topological polynomial
contains a Levy cycle (see [2]), i.e. a multicurve {γ0, γ1, ..., γn−1} such that the only non-
peripheral component γ̃i−1 of f−1(γi) is homotopic to γi−1 and the maps f : γ̃i−1!γi are
of degree 1 for every i (here the indices i are considered modulo n).

(1) For a definition of a hyperbolic orbifold see [4].
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Thurston’s theorem does not, in principle, provide an algorithmic answer to the
question when a Thurston map f is equivalent to a rational function; nor does it construct
the rational function. Many attempts were made to that end, notably [9] and [6]. The
present paper may be seen as another step in this direction.

1.2. Sketch of the method

Given a post-critically finite branched covering f , we associate with it a finitely generated
group acting faithfully on a rooted tree. Its action is given recursively by self-similar
tree isometries. This group, the iterated monodromy group of f , is an invariant for
the branched covering up to equivalence.(2) In favourable (“contracting”) cases, the
“nucleus” of its action is a finite-state automaton characterising the group. This gives
an effective method to solve J. Hubbard’s question for any given m.

Let P be the post-critical set of f . The (pure) mapping class group GC of C=C\P
acts on the branched coverings with post-critical set P by pre- and post-composition.
The action of GC can be pushed through the recursion to give a self-map 	ψ (almost a
homomorphism) of GC such that f ·g and f ·	ψ(g) are combinatorially equivalent. The
map 	ψ is contracting in the case of the rabbit polynomial: there is a finite set L⊂GC
such that for any g∈GC we have 	ψn(g)∈L for some n.

It remains to compute the iterated monodromy group of f ·g for all g∈L to obtain
a general answer to Douady’s and Hubbard’s questions.

1.3. Outline of the paper

We explain in §2 the construction of iterated monodromy groups, the fundamental notion
of “contracting” actions, and nuclei. We apply that construction to the study of Thurston
equivalence and study the post- and pre-composition actions of the mapping class group
on the covering in §3.

We consider in more detail in §4 the rabbit polynomial, for which we obtain the
recursions as described above, and we specialise in §4.3 to Dehn twists around the rabbit’s
ears, obtaining an answer to Hubbard’s question.

We re-express the solution in §5 in more classical terms of iterations of the pull-back
map on Teichmüller and moduli spaces. This gives another approach to the problem,
which is however less algorithmical.

(2) It is a complete invariant for combinatorial equivalence, if equipped with additional algebraic
data; see [8, Theorem 6.5.2] and Proposition 3.1.
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We finally consider in §6 and §7 the other two classes of degree-two topological
polynomials with three finite post-critical points.

§6 deals with the polynomials whose ramification graph is the same as that of z2+i
(period 2, preperiod 1). In particular, we classify the obstructed examples up to combi-
natorial equivalence. The last section considers the case of period 1 and preperiod 2.

1.4. A remark on notation

We compose in most cases transformations as if they acted on the right: in a product f ·g
the transformation f acts before g. In particular, if g1 and g2 are elements of a group,
then gg2

1 =g−1
2 g1g2. However, we sometimes have to also consider left actions. Therefore,

if we write f �g, then we mean left composition, in which g acts before f .

2. Iterated monodromy groups

We give here an overview of techniques and results in self-similar actions and iterated
monodromy groups. More details and proofs can be found in [8].

2.1. Partial self-coverings and monodromy action

A covering is a continuous surjective map f : C1!C of topological spaces, with the prop-
erty that for every z∈C there exists an open neighborhood U of z such that f−1(U) is a
disjoint union of open sets each of which is mapped homeomorphically onto U by f . We
say that the covering f is d-fold if there exists d∈N such that |f−1(z)|=d for all z∈C.

A partial self-covering is a covering map f : C1!C such that C1 is an open subspace
of a path connected and locally path connected space C.

Let f : C1!C be a d-fold partial self-covering. Then the nth iteration fn: Cn!C of
f is a dn-fold partial self-covering with domain Cn, usually smaller than C1.

Choose a basepoint t∈C. Then the fundamental group π1(C, t) acts naturally by
monodromy on each of the sets f−n(t). The action that it induces on the disjoint union⊔

n>0 f
−n(t) is called the iterated monodromy action.

The set
⊔

n>0 f
−n(t) has a natural structure of a rooted d-regular tree. The root of

this tree is the point t∈f−0(t)={t}, and each vertex z∈f−n(t), for n>1, is connected to
the vertex f(z)∈f−(n−1)(t).

The iterated monodromy group of the partial self-covering f , denoted by IMG(f), is
the quotient of the fundamental group π1(C, t) by the kernel of the iterated monodromy



6 l. bartholdi and v. nekrashevych

action. This kernel, by definition, consists of the loops γ∈π1(C, t) such that for every n
all fn-preimages of γ are also loops.

In other words, the iterated monodromy group of f is the group of all automorphisms
of the tree

⊔
n>0 f

−n(t) which are induced by elements of π1(C, t).
The iterated monodromy group can be effectively computed using the following

recursive formula. Choose an alphabet X of d letters. Then every rooted d-regular tree
is isomorphic to the tree X∗ of finite words over the alphabet X. In this tree the empty
word is the root and every word v∈X∗ is connected by edges to all the words of the form
vx, where x∈X is a letter.

We will use throughout the paper the following notation. If γ is a path in C and z

is an f -preimage of the startpoint of γ, then

f−1(γ)[z] (1)

denotes the unique f -preimage of γ starting at z.
Choose a bijection Λ:X!f−1(t) and a path `x in C starting at t and ending in Λ(x)

for every x∈X. Extend the bijection Λ:X!f−1(t) to an isomorphism of the rooted trees
Λ:X∗!

⊔
n>0 f

−n(t) inductively by the condition that

Λ(xv) be the end of the path f−|v|(`x)[Λ(v)].

It is not hard to prove that Λ is a well-defined isomorphism of the rooted trees
(see [8, Proposition 5.2.1]). We then have the following recursive description of the
iterated monodromy action (see [8, Proposition 5.2.2]).

Proposition 2.1. Define an action of π1(C, t) on X∗ by conjugating the iterated
monodromy action by Λ. Then for all γ∈π1(C, t), v∈X∗ and x∈X we have

(xv)γ = y(v`xγx`−1
y ),

where Λ(y) is the end of the path γx=f−1(γ)[Λ(x)].

We multiply the paths in the natural order: in a product γ1γ2 the path γ1 is followed
before the path γ2. Therefore π1(C, t) and IMG(f) act from the right on the tree of
preimages and on X∗. (Note that this is different from the convention in [8].)

2.2. Wreath recursions

The recursive formula in Proposition 2.1 can be interpreted either as a wreath recursion,
or as the description of an automaton.
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A wreath recursion is a homomorphism Φ from a group G to the wreath product
G oS(X), where S(X) is the symmetric group on X. Recall that the wreath product
G oS(X) is, by definition, the semidirect product GX oS(X), where S(X) acts on the
direct power GX by permutation of the coordinates. If X={1, ..., d}, we write the el-
ements of the wreath product in the form 〈〈g1, g2, ..., gd〉〉π, where 〈〈g1, g2, ..., gd〉〉 is an
element of the direct power GX and π is an element of the symmetric group S(X). The
elements of the wreath product are multiplied according to the rule

〈〈g1, g2, ... gd〉〉%〈〈h1, h2, ..., hd〉〉τ = 〈〈g1h1% , g2h2% , ..., gdhd%〉〉%τ.

We denote by g|x the xth coordinate of Φ(g), for g∈G and x∈X. Inductively, we
put

g|vx =(g|v)|x

for all v∈X∗ and x∈X.
We let G act on X by post-composing Φ with the natural homomorphism

G oS(X)−!S(X).

We extend this action to the associated action of G on X∗, defined by the recursion

(xv)g =xg(vg|x).

The associated action and restrictions satisfy the following relations:

(gh)|v = g|vh|vg and g|vw = g|v|w (2)

for all g, h∈G and v, w∈X∗.
If X={1, 2, ..., d}, then Proposition 2.1 can be expressed in terms of wreath recur-

sions in the following way.

Proposition 2.2. The action of π1(C, t) on X∗ is the action associated with the
wreath recursion Φ:π1(C, t)!π1(C, t) oS(X) given by

Φ(γ) = 〈〈`1γ1`
−1
k1
, `2γ2`

−1
k2
, ..., `dγd`

−1
kd
〉〉%,

where γi=f−1(γ)[Λ(i)], Λ(ki) is the endpoint of γi, and % is the permutation i 7!ki.

2.3. Virtual endomorphisms

A wreath recursion Φ:G!G oS(X) can be constructed using the associated virtual en-
domorphism. A virtual endomorphism φ:G99KG is a homomorphism Domφ!G from a
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subgroup of finite index into G. The subgroup Domφ is called the domain of the virtual
endomorphism φ.

If Φ:G!G oS(X) is a wreath recursion and x0∈X is a letter, then the domain of
the associated virtual endomorphism φ=φx0 is the stabilizer of the letter x0 (with respect
to the action of G on X); and the virtual endomorphism is defined as the restriction

φ(g) = g|x0 .

It follows from the relations (2) that φ: Domφ!G is a homomorphism.
Suppose that the action of G on X={1, 2, ..., d} is transitive, choose x0=1, and

choose some ri∈G, for all i∈X, such that 1ri =i. Write hi=ri|1. Then the wreath
recursion can be reconstructed by the formula

Φ(g) = 〈〈h−1
1 φ(r1gr−1

k1
)hk1 , h

−1
2 φ(r2gr−1

k2
)hk2 , ..., h

−1
d φ(rdgr−1

kd
)hkd

〉〉%,

where hi=ri|1, % is the permutation i 7!ki, and the indices ki are uniquely defined by
the condition rigr−1

ki
∈Domφ.

If we change the elements hi, or if we change {ri}i∈X to another left coset transversal,
then we change Φ to its post-composition by an inner automorphism of G oS(X), and
therefore conjugate the associated actions of G on X∗ by an automorphism of X∗. More
precisely (see [8, §2.3 and §2.5]), there will exist an automorphism ∆ of the d-regular
rooted tree, conjugating G into the new action; and ∆ will satisfy a recursion of the form

Φ(∆) = 〈〈g1∆, ..., gd∆〉〉π,

where 〈〈g1, ..., gd〉〉π is the element defining the inner automorphism of G oS(X).

2.4. Contraction

A wreath recursion Φ:G!G oS(X) is contracting if there is a finite set N⊂G such
that for every g∈G there exists n0∈N with g|v∈N for all words v∈X∗ of length greater
than n0. This property ensures that many calculations regarding arbitrary elements of G
can be reduced, via the wreath recursion, to considerations on a finite set. For example,
the “word problem” (determining if a given product of N generators is trivial) can be
solved in polynomial time in contracting groups.

If G is generated by a finite symmetric set S=S−1, then a subset N⊂G satisfies the
above condition if and only if 1∈N and there exists n0∈N such that

(gs)|v ∈N
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for all g∈N , s∈S and words v∈X∗ of length greater than n0.

The smallest set N satisfying the condition of these definitions is called the nucleus
of the contracting action.

If φ:G99KG is a virtual endomorphism of a finitely generated group, then its spectral
radius is equal to

r(φ) = lim sup
n!∞

n

√√√√ lim sup
g∈Dom φn

l(g)!∞

l(φn(g))
l(g)

,

where l(g) denotes the word length of g with respect to some fixed generating set of G.

Proposition 2.3. ([8, Proposition 2.11.11]) Let Φ:G!G oS(X) be a wreath recur-
sion and let φ be an associated virtual endomorphism.

If Φ is contracting, then r(φ)<1. If the action of G on X∗ is transitive on every
level Xn (in particular, if it is transitive on X1 and φ is onto) and r(φ)<1, then the
wreath recursion Φ is contracting.

It is proved in [8, Theorem 5.5.3] that if a partial self-covering f : C1!C is expand-
ing, then the associated wreath recursion Φf on π1(C), as defined in Proposition 2.2, is
contracting.

2.5. Automata

It is convenient to describe wreath recursions and nuclei of contracting wreath recursions
in terms of automata.

A subset A⊂G is state-closed if for every g∈A and x∈X we have g|x∈A. It is easy
to see that the nucleus of a contracting wreath recursion is a state-closed set.

If A is a state-closed set, then we interpret it as an automaton, which, when it is in a
state g∈A and it reads a letter x∈X on the input tape, prints the letter xg on the output
tape and goes to the state g|x. Then the automaton A with initial state g transforms
any word v∈X∗ to the word vg and thus describes the associated action of G on X∗.

We draw state-closed sets as graphs (Moore diagrams) with vertex set A. The vertex
g∈A is marked by its image in S(X), i.e. by the permutation it induces on X, and for
every g∈A and x∈X we draw an arrow from g to g|x labeled by x. Then the graph
completely describes the restriction of the wreath recursion to A.

We will always have in our paperX={0, 1}; then the symmetric group S(X) consists
of two elements: 1 and σ=(0, 1). If an element of GX or S(X) is trivial, then we usually
do not write it, so that 〈〈g0, g1〉〉=〈〈g0, g1〉〉1 and σ=〈〈1, 1〉〉σ. The elements of G oS(X)
are either written g=〈〈g0, g1〉〉 (they are then called inactive), or g=〈〈g0, g1〉〉σ (and are
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then called active). All computations in G oS(X) are based then on two rules:

〈〈g0, g1〉〉·〈〈h0, h1〉〉= 〈〈g0h0, g1h1〉〉 and σ ·〈〈g0, g1〉〉= 〈〈g1, g0〉〉σ.

In drawing Moore diagrams, we indicate active states by a grey dot and inactive states
by a white dot.

3. Post-critically finite topological polynomials

3.1. Homotopy in terms of wreath recursion

Let P0⊂C be a finite set of complex numbers and suppose that a map fP :P0!P0 and a
point c0∈P0 are given such that P0={f �n

P (c0):n>0}. Let F be the set of all degree-two
orientation-preserving branched coverings f : Ĉ!Ĉ, with critical points c0 and ∞, whose
restriction to P0 coincides with fP and f−1(∞)={∞}.

Let us denote by P the set of post-critical points of f , i.e. P={f �n(c0):n>1}∪{∞}.
Note that P=P0∪{∞} if c0 is periodic (i.e. if f �n

P (c0)=c0 for some positive n) and
P=(P0\{c0})∪{∞} otherwise. The ramification graph of f is the directed graph with
vertex set P and an arrow from p to f(p) for each p∈P .

If f∈F , then IMG(f) is defined as the iterated monodromy group of f : C1!C, where
C=Ĉ\P and C1=f−1(C).

Let us denote by F the set of homotopy classes (within F) of branched coverings
f∈F ; in other words, F is the set of path-connected components of the space F .

Choose a basepoint t∈C, imagined close to infinity. Note that π1(C, t) is a free group
of rank |P |−1; we can take its generators to be loops going around the finite post-critical
points in the positive direction.

Let a be a small simple closed loop in Ĉ going around ∞ in the negative direction
and based at t (on C it is a big loop going in the positive direction around all the finite
post-critical points). The loop a divides the sphere Ĉ into two parts. One contains ∞
and the other contains P \{∞}.

We may assume, after changing the map f to a homotopic one, that f(a)=a. Then
f maps a onto itself by a degree-two covering. We call a the circle at infinity. We may
also assume that f(t)=t (again after changing f to a homotopic map). Let us denote t by
+∞ and the f -preimage of t different from t by −∞. The loop a has two f -preimages.
One is the subcurve of a starting at +∞ and ending at −∞. The other is the curve
starting at −∞ and ending at +∞.

Let the connecting path `0 be the trivial path starting and ending in the basepoint
+∞. Let `1 be the f -preimage of a starting at +∞ and ending in −∞ (the upper semi-
circle at infinity). Let Φf :π1(C, t)!S(X) oπ1(C, t) be the wreath recursion defined by f



thurston equivalence of topological polynomials 11

and the given choice of connecting paths, and let Λf :π1(C, t)!Aut(X∗) be the associ-
ated iterated monodromy action on the tree X∗ (see Proposition 2.2 and the definition
of the associated action before it).

Note that Λf (a) is always equal to the standard adding machine τ=〈〈1, τ〉〉σ.

Proposition 3.1. Two branched coverings f0, f1∈F are homotopic if and only if
there exists n∈Z such that for every γ∈π1(C,+∞) we have

Φf0(γ) =Φf1(a
n ·γ ·a−n).

Proof. Suppose that the branched coverings f0 and f1 are homotopic. Let fx be
a homotopy between them, where x varies from 0 to 1. The basepoint t=+∞ has two
preimages under fx. The first preimage t0(x) draws, as x ranges over [0, 1], a path g0

starting at +∞. The other preimage t1(x) draws a path g1 starting at −∞.
Either t0(1)=+∞ and t1(1)=−∞, and then g0 and g1 are loops, or t0(1)=−∞ and

t1(1)=+∞, and then g0 goes from +∞ to −∞ and g1 goes from −∞ to +∞. We have
chosen t=+∞ to be close to the point ∞∈P and the homotopies must fix the point ∞,
so t0(x) and t1(x) remain close to ∞. Consequently, if g0 and g1 are loops, then g0=an

and g1=`−1
1 am`1 for some n,m∈Z, and if g0 and g1 are not loops, then they are of the

form an`1 and ¯̀
1a

m, where ¯̀
1 is the lower semi-circle at infinity (we have a=`1 ¯̀

1). Given
two paths b and c, we write b=c here and below to indicate that they are homotopic.

One of the fx-preimages of the loop a is a path `(x, · ): [0, 1]!C starting in t0(x) and
ending in t1(x). We have `(0, · )=`1. The path `(1, · ) is equal to `1 if g0 and g1 are loops,
and to the lower semicircle ¯̀

1 otherwise. Note also that `( · , 0)=g0 and `( · , 1)=g1.
The path `(x, y) depends continuously on x, and therefore defines a continuous map

`(x, y): [0, 1]×[0, 1]!C. It follows that if g0 and g1 are loops, then g0=`1 ·g1 ·`−1
1 , and if

not, then g0=`1 ·g1 ·(¯̀1)−1.
Consequently, if g0=an then g1=`−1

1 an`1, and if g0=an`1 then g1=`−1
1 an`1 ¯̀

1=
`−1
1 an+1.

Take an arbitrary loop γ∈π1(C, t), and let γ0=f−1
0 (γ)[+∞] and γ1=f−1

0 (γ)[−∞]
denote their preimages starting at +∞ and −∞, respectively. The homotopy from f0

to f1 deforms the paths γi continuously, giving paths γ0,x=f−1
x (γ) [t0(x)] and γ1,x=

f−1
x (γ) [t1(x)].

Suppose first that γ0, γ1, g0=an and g1=`−1
1 an`1 are loops. Then we get a homotopy

transforming γ0 via t0([0, x])γ0,xt0([0, x])−1 to the loop

g0γ
′
0g

−1
0 = anγ′0a

−n,

where γ′0=f−1
1 (γ)[+∞].
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Similarly, the loop `1γ1`
−1
1 is homotopic to

`1g1γ
′
1g

−1
1 `−1

1 = an`1γ
′
1`

−1
1 a−n,

where γ′1=f−1
1 (γ)[−∞].

Since we assumed that γi are loops, Φf1(γ)=〈〈γ′0, `1γ′1`−1
1 〉〉. We then compute

Φf0(γ) = 〈〈γ0, `1γ1`
−1
1 〉〉= 〈〈anγ′0a

−n, an`1γ
′
1`

−1
1 a−n〉〉

= 〈〈an, an〉〉·Φf1(γ)·〈〈a−n, a−n〉〉=Φf1(a
2n ·γ ·a−2n).

If on the other hand Φf1(γ)=〈〈γ̃′0, γ̃′1〉〉σ, then

Φf1(γ ·a) = 〈〈γ̃′0, γ̃′1〉〉σ〈〈1, a〉〉σ= 〈〈γ̃′0a, γ̃′1〉〉.

We then obtain Φf0(γa)=Φf1(a
2n ·γa·a−2n), so again

Φf0(γ) =Φf1(a
2n ·γ ·a−2n).

Consider now the case g0=an`1 and g1=`−1
1 an+1. Take a loop γ∈π1(C,+∞) such

that its f1-preimages are loops γ0 and γ1, so that we have Φf0(γ)=〈〈γ0, `1γ1`
−1
1 〉〉. Let

γ′0 and γ′1 be the f1-preimages of γ, so that Φf1(γ)=〈〈γ′0, `1γ′1`−1
1 〉〉. Then, as before, γ0

is homotopic to g0γ
′
1g

−1
0 =an`1γ

′
1`

−1
1 a−n, and `1γ1`

−1
1 is homotopic to `1g1γ

′
0g

−1
1 `−1

1 =
`1`

−1
1 an+1γ′0a

−n−1`1`
−1
1 =an+1γ′0a

−n−1. We then have

Φf0(γ) = 〈〈γ0, `1γ1`
−1
1 〉〉= 〈〈an`1γ

′
1`

−1
1 a−n, an+1γ′0a

−n−1〉〉

= 〈〈an, a(n+1)〉〉σ ·〈〈γ′0, `1γ′1`−1
1 〉〉·σ〈〈a−n, a−(n+1)〉〉=Φf1(a

2n+1 ·γ ·a−2n−1).

If Φf1(γ) is of the form 〈〈γ̃′0, γ̃′1〉〉σ, we reduce to the previous case by multiplying
by a, as before. We also obtain Φf0(γ)=Φf1(a

2n+1 ·γ ·a−2n−1).
Suppose now, in order to prove the proposition in the other direction, that there

exists n∈Z such that
Φf0(γ) =Φf1(a

n ·γ ·a−n) (3)

holds for all γ∈π1(C,+∞).
For i∈{0, 1}, denote by Gi6π1(C,+∞) the set of loops whose preimages under fi

are loops. The set Gi is an index-two subgroup, isomorphic both to π1(f−1
i (C),+∞)

and to π1(f−1
i (C),−∞), where the isomorphisms Gi!π1(f−1

i (C),±∞) are the maps
γ 7!f−1

i (γ)[±∞]. Note that if γ∈Gi, then

Φfi(γ) = (f−1
i (γ)[+∞], `1 ·fi(γ)[−∞]·`−1

1 ).
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Condition (3) implies that G0=G1 and that for all γ∈G0=G1,

f−1
0 (γ)[+∞] is homotopic to f−1

1 (anγa−n)[+∞] in C (4)

and

`1 ·f−1
0 (γ)[−∞]·`−1

1 is homotopic to `1 ·f−1
1 (anγa−n)[−∞]·`−1

1 . (5)

The equality G0=G1 implies that there are homeomorphisms

h+, h−: f−1
0 (C)−! f−1

1 (C)

such that f0=f1�h±, where h+ fixes the preimages +∞ and −∞ of the basepoint, and
h− permutes them.

The homeomorphisms h± then fix the points c0, c1, c2 and can be extended in a
unique way to homeomorphisms h̃±: C!C.

Suppose first that n is even. Then f−1
0 (an)[+∞]=an/2 and we have from (4),

h̃+(f−1
0 (γ)[+∞])= f−1

1 (γ)[+∞] = f−1
0 (a−nγan)[+∞] = a−n/2 ·f−1

0 (γ)[+∞]·an/2,

where all equalities are homotopies in C. We then have

h̃+(γ) = a−n/2γan/2

for all γ∈π1(C,+∞).
Suppose now that n is odd. Then f−1

0 (a−n)[−∞]=`−1
1 a(−n+1)/2. We have

h̃−(f−1
0 (γ)[+∞])= f−1

1 (γ)[−∞]

for every γ∈G0. Let us identify the group π1(C,+∞) with π1(C,−∞), by identifying the
loop f−1

1 (γ)[−∞]∈π1(C,−∞) with the loop

`1 ·f−1
1 (γ)[−∞]·`−1

1 = `1 ·f−1
0 (a−nγan)[−∞]·`−1

1 = a−(n−1)/2 ·f−1
0 (γ)[+∞]·a(n−1)/2.

We see that for every γ∈π1(C,+∞) the loop h̃−(γ) is identified with a−(n−1)/2γa(n−1)/2.
Therefore in all cases we can find a homeomorphism h: C!C satisfying f0=f1�h and

such that the induced homomorphism h∗ on the fundamental group π1(C,+∞) is inner.
But if a homeomorphism of a surface induces an inner automorphism of the fundamental
group, then this homeomorphism is isotopic to identity. Consequently, f0 and f1 are
homotopic.
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3.2. The set F as a bimodule over the mapping class group

Denote by GC the (pure) mapping class group of C=Ĉ\P , i.e. the set of isotopy classes
relative to P of homeomorphisms h: Ĉ!Ĉ fixing P pointwise. The group GC is the
quotient of the pure braid group on |P |−1 strings by its centre. For instance, if |P |=4,
then GC is a free group on two generators.

The set F has a natural structure of a permutational GC -bimodule, i.e. a set F

equipped with commuting left- and right-actions of the group GC . If f∈F and h∈GC , then
we just set fh and hf to be the corresponding compositions. (Here in the composition
fh the map f acts before h.) It is easy to see that the left and the right actions of GC
on F are well defined and commute.

There exists a natural homomorphism GC!Out(π1(C)) mapping every element h∈GC
to the automorphism h∗ of the fundamental group of C (which is defined uniquely up to
an inner automorphism of π1(C)). It is well known that this homomorphism is injective
(see [11, Theorem 5.13.1]).

Using this fact and Proposition 3.1 one can describe the structure of the bimodule F.
Take an arbitrary f∈F and a homeomorphism h: Ĉ!Ĉ acting trivially on P (we will also
denote by f∈F and h∈GC the corresponding homotopy classes). Recall that a denotes a
small circle in the neighbourhood of ∞.

Proposition 3.2. For f∈F and g, h∈GC, the following conditions are equivalent :
(i) fg=hf ;
(ii) there exists n∈Z such that

Φf (γg−1
) =Φf (γan

)h−1

for all γ∈π1(C,+∞);
(iii) there exists n∈Z such that

Φf (γ)h =Φf (γgan

)

for all γ∈π1(C,+∞);
(iv) there exists n∈Z such that

φf (γ)h =φf (γgan

)

for all γ∈Domφf , where φf is the virtual endomorphism associated with the first coor-
dinate of the wreath recursion Φf .

Proof. It is obvious that (ii) is equivalent to (iii). The equivalence of (iii) and (iv)
follows directly from the definition of the virtual endomorphism associated with a wreath
recursion. The equivalence of (i) and (ii) follows directly from Propositions 3.1 and 2.2,
and the specific definition of Φf that we gave in §3.1.
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Definition 3.1. Two branched coverings f1, f2∈F are combinatorially equivalent
(also called Thurston equivalent) if there exists a homeomorphism h of Ĉ fixing P point-
wise, such that f1 ·h and h·f2 are homotopic.

In other words, two elements f1, f2∈F are equivalent if there exists an element h
of the mapping class group of Ĉ\P such that f1h=hf2 in F (recall that F is the set of
homotopy classes of branched coverings).

Corollary 3.3. If two branched coverings f0, f1∈F are combinatorially equivalent,
then

Λf0(π1(C, t))= Λf1(π1(C, t)),

as subsets of Aut(X∗).

(Recall that Λf :π1(C, t)!Aut(X∗) is the associated iterated monodromy action.)

Proof. Let first Φ:G!G oS(X) be a wreath recursion, and let h be an automor-
phism of G. Consider the wreath recursion Φh:G!G oS(X) given by Φh(g)=Φ(gh−1

)h,
where h acts on G oS(X) by the diagonal action on GX. Let ΛΦ denote the action of
G on X∗ defined by the recursion Φ: if g∈G, then ΛΦ(g) maps x1 ... xn∈X∗ to y1 ... yn,
where Φ(g)=〈〈g1, ..., gd〉〉π and xπ

1 =y1, and ΛΦ(gx1) maps x2 ... xn to y2 ... yn.
We easily check by induction that ΛΦ(g)=ΛΦh(gh): the respective actions on the

first level coincide, and the xth coordinate gh|x of Φh(gh) is equal to (g|x)h, where g|x is
the xth coordinate of Φ(g).

Let now h be an element of the mapping class group of Ĉ\Pf0 such that f0 ·h and
h·f1 are homotopic. Then, by Proposition 3.1,

Φf0(γ
h−1

) =Φf1(γ
an

)h−1

for some n. Consequently, Φh
f0

(γ)=Φf0(γ
h−1

)h=Φf1(γ
an

). By the first two paragraphs,
we have ΛΦh

f0
(γ)=Λf0(γ

h−1
).

The wreath recursion γ 7!Ψ(γ):=Φf1(γ
an

) is the conjugate by Φf1(a
n) of Φf1 , so

ΛΨ(γ) is the conjugate of Λf1(γ) by the automorphism ∆ of X∗ given by the recursion

∆ = τn ·〈〈∆,∆〉〉,

where τ=〈〈1, τ〉〉σ=Λfi(a) is the adding machine. Now the element τn∆ satisfies the
recursion

τn∆ = τ2n〈〈∆,∆〉〉= 〈〈τn∆, τn∆〉〉,

so τn∆=1, and therefore ∆ equals τ−n.
Consequently, Λf0(γ

h−1
)=Λf1(γ

a−n

), hence Λf0(γ)=Λf1(γ
ha−n

), which implies that
Λf0(π1(C, t))=Λf1(π1(C, t)).
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γ

β
α

+∞
−∞

f−1
R (α)

f−1
R (α)

f−1
R (β)

f−1
R (β)f−1

R (γ)

f−1
R (γ)

+∞

Figure 1. Computing IMG(fR).

4. Twisted rabbits

We consider now some concrete examples of bimodules F. We will consider the cases
when f is a quadratic polynomial whose set of finite post-critical points has size 3.

Let us consider first the “Douady rabbit” [7, Figure 35]. It is the polynomial fR≈
z2+(−0.1226+0.7449i). The two other polynomials inducing the same permutation of
their post-critical set are the “corabbit” fC≈z2+(−0.1226−0.7449i) and the “airplane”
fA≈z2−1.7549.

We choose as usual +∞ as the basepoint. Let α, β and γ be the loops going around
c, c2+c and 0, respectively, in the positive direction and connected to the basepoint as
shown in the left part of Figure 1. Let P={∞, 0, c, c2+c} be the post-critical set of fR.

The rabbit’s wreath recursion ΦfR
is defined by

ΦfR
(α) = 〈〈α−1β−1, γβα〉〉σ, ΦfR

(β) = 〈〈α, 1〉〉 and ΦfR
(γ) = 〈〈β, 1〉〉.

The preimages of the paths α, β and γ are shown in the right part of Figure 1. Note
that τ=γβα=〈〈1, γβα〉〉σ is the standard adding machine.

4.1. The mapping class group action

The mapping class group GC is generated by the left-handed (counterclockwise) Dehn
twist T about the curve encircling the points c and c2+c, and by the left-handed twist
S about the curve encircling the points 0 and c2+c (see Figure 2).

The twists T and S are defined by their action on the fundamental group of the
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S

T

0

c2+c
c

Figure 2. The generators of GC .

punctured plane by the rules

αT =αβα, βT =ββα =βα, γT = γ,

αS=α, βS=βγβ , γS= γγβ = γβ .

Their inverses act by the rules

αT−1
=αα−1β−1

=αβ−1
, βT−1

=βα−1β−1
, γT−1

= γ,

αS−1
=α, βS−1

=ββ−1γ−1
=βγ−1

, γS−1
= γβ−1γ−1

.

Proposition 4.1. Let ψ be the virtual endomorphism of the group GC defined on
the subgroup H=〈T 2, S, ST 〉 of index 2 by

ψ(T 2) =S−1T−1, ψ(S) =T and ψ(ST ) = 1.

Consider the map

	ψ: g 7−!
{
ψ(g), if g belongs to the domain of ψ,
Tψ(gT−1), otherwise.

Then for every g∈GC the branched coverings fR ·g and fR ·	ψ(g) are combinatorially equiv-
alent.

The subgroup H is generated by those Dehn twists about curves that encircle the
critical value c an even number of times. They are therefore those mapping classes that
can be lifted through fR. The map ψ is precisely that lift.

Proof. We first claim that for all g∈H the maps fRg and ψ(g)fR are homotopic. It
suffices to check this on the generators {T 2, S, ST } of H, and this is done below.
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Note then that fR ·g=ψ(g)·fR=ψ(g)·(fR ·ψ(g))·ψ(g)−1, i.e. that fR ·g and fR ·ψ(g)
are combinatorially equivalent.

If g does not belong to the domain of ψ, then gT−1 does, and

fR ·g= fR ·gT−1T =ψ(gT−1)·fR ·T =ψ(gT−1)·(fR ·Tψ(gT−1))·ψ(gT−1)−1,

i.e. fR ·g and fR ·	ψ(g) are combinatorially equivalent.
Let now φ=φfR

be the virtual endomorphism associated with the first coordinate
of the wreath recursion ΦfR

. We have

α=φ(β), β=φ(γ), γ=φ(α2β−1γ−1
),

γβα=φ(α2), φ(βα)= 1, φ(γα)= 1,

from which we compute

φ(βT 2
) =φ(βαβα) =φ(βα2·βα

) =αβ−1γβα,

φ(γT 2
) =φ(γ) =β,

φ((α2β−1γ−1
)T 2

) =φ(α2β−1βαβαγ−1
) =φ(α2βα·γ−1

) = γβαβ−1
.

We see that for every δ∈π1(C,+∞) we have φ(δT 2
)=φ(δ)h, where the automorphism h

is given on the generators by

αh =αβ−1γβα, βh =β and γh = γβαβ−1
. (6)

The automorphism h is equal to the product S−1T−1a, where a is conjugation by γβα:

α
S−1

7−−−!α
T−1

7−−−!αβ−1 a7−!αβ−1γβα,

β
S−1

7−−−!βγ−1 T−1

7−−−!βα−1β−1γ−1 a7−!β,

γ
S−1

7−−−! γβ−1γ−1 T−1

7−−−! γβ−α−1β−1
γ−1 a7−! γβαβ−1

.

Consequently, by Proposition 3.2 (iv) with n=1,

fR ·T 2 =S−1T−1 ·fR.

We have next

φ(βS) =φ(βγβ) =αβα, φ(γS) =φ(γβ) =βα and φ((α2β−1γ−1
)S) =φ(α2β−1γ−1

) = γ,

so
fR ·S=T ·fR.
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Let us finally compute the action of ST on the generators {α, β, γ} of the funda-
mental group:

α
T−1

7−−−!αβ−1 S7−−!αβ−γβ T7−−!αβαβ−αγβα

=αγ−1α−1β−1αγα−1βα,

β
T−1

7−−−!βα−1β−1 S7−−!βγβα−1β−1γ−1β−1γβ T7−−!βαγα−1γ−1α−1β−1αγα−1βα,

γ
T−1

7−−−! γ
S7−−! γβ T7−−! γα−1βα.

Let us apply the virtual endomorphism φ to the conjugators:

φ(γ−1 ·α−1β−1α·γ ·α−1βα) =β−1β=1,

φ(αγα−1 ·γ−1 ·α−1β−1α·γ ·α−1βα) =β−1β=1,

φ(α−1βα) = 1.

Consequently,

φ((α2)T−1ST ) =φ(α2), φ(βT−1ST ) =φ(β) and φ(γT−1ST ) =φ(γ),

which implies that
fR ·ST = fR.

Proposition 4.2. The map 	ψ:GC!GC is contracting : for every g∈GC there exists
n∈N such that 	ψn(g)∈{1, T, T−1}.

Proof. Consider the wreath recursion for GC given by

Φ(T ) = 〈〈1, S−1T−1〉〉σ and Φ(S) = 〈〈T, 1〉〉. (7)

It is straightforward to check that 	ψ may be recovered from the recursion as follows:
if Φ(g)=〈〈g0, g1〉〉, then 	ψ(g)=g0; if Φ(g)=〈〈g0, g1〉〉σ, then 	ψ(g)=Tg0. Since T |0=1, we
obtain inductively for all n∈N,

	ψn(g) = g|v or 	ψn(g) =Tg|v for some v ∈Xn.

We first claim that the recursion (7) is contracting. For that purpose, it suffices to
compute the nucleus of (7). A simple calculation shows that it is

N = {1, S, T, TS, S−1, T−1, S−1T−1}.

It follows that for all g∈GC we have 	ψn∈N∪TN for all sufficiently large n, and therefore
that 	ψn(g) lands on a 	ψ-cycle. Direct computations then show that the only 	ψ-periodic
elements in N∪TN are the fixed points 1 and T , and the cycle

T−1 7−!T 2S 7−!S−1 7−!T−1.
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4.2. Contraction along the subgroup 〈T 〉

Every integer m has a unique 4-adic expansion

m=
∞∑

k=0

mk4k,

with mk∈{0, 1, 2, 3}, and almost all mk=0 if m is non-negative, and almost all mk=3 if
m is negative.(3)

Proposition 4.3. If the 4-adic expansion of the number m has digits 1 or 2, then
the branched covering fR ·Tm is equivalent to fR ·T . Otherwise it is equivalent to fR for
non-negative m and to fR ·T−1 for negative m.

Proof. Let us iterate the map 	ψ on the cyclic subgroup 〈T 〉. We have

	ψ 3(T 4k) = 	ψ 2(S−1T−1)2k = 	ψ 2((S−1 ·S−T ·T−2)k) = 	ψ(T−1 ·1·TS)k = 	ψ(Sk) =T k,

so fR ·T 4k is equivalent to fR ·T k. Similarly

	ψ 3(T 4k+1) = 	ψ 2(Tψ(T 4k))

= 	ψ 2(T (S−1T−1)2k)

= 	ψ(Tψ(T (S−1T−1)2kT−1))

= 	ψ(Tψ((TS−1T−1 ·S−1 ·T−2)k))

= 	ψ(T (1·T−1 ·TS)k)

= 	ψ(TSk)

=Tψ(TSkT−1)

=T,

so all branched coverings fR ·T 4k+1 are equivalent to fR ·T . Next,

	ψ 3(T 4k+2) = 	ψ 2(S−1T−1)2k+1

= 	ψ(Tψ((S−1T−1)2k+1T−1))

= 	ψ(Tψ((S−1 ·S−T ·T−2)k ·S−1 ·T−2))

= 	ψ(T (T−1 ·1·TS)k ·T−1 ·TS)

= 	ψ(TSk+1)

=Tψ(TSk+1T−1)

=T,

(3) For example, m=−1 corresponds to mk=3 for all k.
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α
β

γ

α
β

γ

Figure 3. The standard generators of IMG(fA) and IMG(fC).

so all branched coverings fR ·T 4k+2 are equivalent to fR ·T . Finally

	ψ 3(T 4k+3) = 	ψ 2(Tψ(T 4k+2))= 	ψ 2(T (S−1T−1)2k+1)

= 	ψ 2(TS−1T−1 ·(S−1 ·S−T ·T−2)k) = 	ψ(1·(T−1 ·1·TS)k) = 	ψ(Sk) =T k,

so fR ·T 4k+3 is equivalent to fR ·T k. The statement now easily follows.

4.3. Solving the problem for all m∈Z

The wreath recursion for the airplane polynomial fA is given by

ΦfA
(α) = 〈〈α−1, γα〉〉σ, ΦfA

(β) = 〈〈α, 1〉〉 and ΦfA
(γ) = 〈〈1, βγ−1

〉〉. (8)

Here α, β and γ are loops going in the positive direction around c, c2+c and (c2+c)2+c,
respectively, as shown in the left part of Figure 3.

The wreath recursion for the corabbit fC is given by

ΦfC
(α) = 〈〈α−1β−1, γβα〉〉σ, ΦfC

(β) = 〈〈αβα, 1〉〉 and ΦfC
(γ) = 〈〈βα, 1〉〉. (9)

Here α, β and γ are loops going in the positive direction around c, c2+c and (c2+c)2+c,
respectively, as shown in the right part of Figure 3. Note that for f=fA, fC , just as for
f=fR, we have Φf (γβα)=〈〈1, γβα〉〉σ.

Let us identify the planes of fA and fC with the plane of fR by identifying their
respective loops α, β and γ (the definition of α, β and γ in the plane of fR is given in
the left part of Figure 1).
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Let T denote, as before, the left Dehn twist about the curve around the points c
and c2+c in the plane of fR. Then, from the definition of T , we get the following wreath
recursion for the standard iterated monodromy action for Tm ·fR:

ΦT m·fR
(α) =ΦfR

(α)T−m

= 〈〈α−1β−1, γβα〉〉σ,

ΦT m·fR
(β) =ΦfR

(β)T−m

= 〈〈α(α−1β−1)m

, 1〉〉,

ΦT m·fR
(γ) =ΦfR

(γ)T−m

= 〈〈β(α−1β−1)m

, 1〉〉,

(10)

where T−m acts on π1(C,+∞) oS(X) by the diagonal action:

(〈〈x, y〉〉σk)T−m

= 〈〈xT−m

, yT−m

〉〉σk.

Corollary 3.3 makes it possible to solve Hubbard’s question algorithmically for every
given m in the following way.

Thurston’s Theorem 1.1 implies that Tm ·fR is combinatorially equivalent to exactly
one polynomial in the set {fR, fA, fC}. There are no obstructions, since the only ob-
structions for polynomials are Levy cycles, which cannot exist in the case of a periodic
critical point. Corollary 3.3 then tells us that ΛT m·fR

(π1(C)) coincides with the iterated
monodromy group of the associated polynomial. One can prove that these groups are
different (as sets), and therefore, if we prove that ΛT m·fR

(π1(C)) coincides with a given
group IMG(f∗) for ∗∈{R,A,C}, then we can conclude that Tm ·fR is equivalent to the
respective f∗.

We therefore prove that the IMG(f∗) are all distinct. This is done by computing their
nuclei, and checking that they are distinct as finite automata; this is done in Figure 4.

Proposition 4.4. The group IMG(T ·fR)=ΛT ·fR
(π1(C)) coincides with IMG(fA).

Indeed the homeomorphism h=TS−1a conjugates T ·fR with fA, if the planes of fR and
fA are identified as above.

Proof. Let α, β and γ be the generators of IMG(fA). They are defined now as the
automorphisms of X∗ satisfying the recursion (compare with (8))

α= 〈〈α−1, γα〉〉σ, β= 〈〈α, 1〉〉 and γ= 〈〈1, βγ−1
〉〉.

Let α1, β1 and γ1 be the generators of IMG(T ·fR). They are given by the recur-
sion (10):

α1 = 〈〈α−1
1 β−1

1 , γ1β1α1〉〉σ, β1 = 〈〈αβ−1
1

1 , 1〉〉 and γ1 = 〈〈βα−1
1 β−1

1
1 , 1〉〉.

We claim that

α1 =αh =αβγ−1
αγβα, β1 =βh =βγ−1αγβα and γ1 = γh = γα.



thurston equivalence of topological polynomials 23

β−1

βα α−1

γβα α−1β−1γ−1

α α−1β−1

β

1

1

1
1

1

0 0

0

0
0

0
0

γβα

γα

α−1

α

α−1γ−1

α−1β−1γ−1

1

1

1

1

1

0

0

0
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Figure 4. Nuclei of the rabbit (top), the corabbit (right) and the airplane (bottom).

For that purpose, it suffices to show that the right-hand sides of these equalities satisfy
the same recursions as α1, β1 and γ1. Note that γhβhγh=(γβα)h=γβα. We have

βγ−1
αγβα= 〈〈α, 1〉〉〈〈α−1, γα〉〉σ〈〈1, γβα〉〉σ= 〈〈γβα, γα〉〉,

hence

αβγ−1
αγβα =(〈〈α−1, γα〉〉σ)〈〈γβα,γα〉〉

= 〈〈α−1β−1γ−1α−1γα, α−1γ−1γαγβα〉〉σ

= 〈〈α−1β−1γ−1α−1γα, γβα〉〉σ

= 〈〈(γβα)−hγh, (γβα)h〉〉σ

= 〈〈α−hβ−h, γhβhαh〉〉σ,

βγ−1αγβα =βγ−1βγ−1
αγβα = 〈〈α, 1〉〉〈〈γβα,γα〉〉 = 〈〈αγβα, 1〉〉

= 〈〈(αγβγ−1αγβα)β−γ−1αγβα

, 1〉〉= 〈〈(αh)β−h

, 1〉〉,

γα = 〈〈1, βγ−1
〉〉〈〈α

−1,γα〉〉σ = 〈〈βα, 1〉〉

= 〈〈(βα−γββ−1
)γ−1αγβα, 1〉〉= 〈〈(βh)α−hβ−h

, 1〉〉.

This shows the required relations between α, β, γ and α1, β1, γ1, so IMG(fA)=
IMG(T ·fR). Proposition 3.1 now implies that T ·fR is homotopic to h−1 ·fA ·h.
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Proposition 4.5. The group

IMG(T−1 ·fR) =ΛT−1·fR
(π1(C))

coincides with IMG(fC). Moreover, T−1 ·fR and fC are homotopic if the planes of fR

and fC are identified as above.

Proof. Let α, β and γ be the generators of the iterated monodromy group of the
corabbit. They are defined by the recursion (compare with (9))

α= 〈〈α−1β−1, γβα〉〉σ, β= 〈〈αβα, 1〉〉 and γ= 〈〈βα, 1〉〉.

Let α−1, β−1 and γ−1 be the generators of IMG(T−1 ·fR). They are given by the
recursion (10):

α−1 = 〈〈α−1
−1β

−1
−1 , γ−1β−1α−1〉〉σ, β−1 = 〈〈αβ−1α−1

−1 , 1〉〉 and γ−1 = 〈〈βα−1
−1 , 1〉〉.

Since these two recursions are the same, we have α−1=α, β−1=β and γ−1=γ. Proposi-
tion 3.1 now implies that fC and T−1 ·fR are homotopic.

Corollary 4.6. The branched coverings T ·fR and fR ·T are equivalent to fA and
the branched coverings T−1 ·fR and fR ·T−1 are equivalent to fC .

The last corollary together with Proposition 4.3 prove the following solution of the
“twisted rabbit question”.

Theorem 4.7. If the 4-adic expansion of the number m has digits 1 or 2, then the
branched covering fR ·Tm is equivalent to the airplane fA. Otherwise it is equivalent to
the rabbit fR for non-negative m and to the corabbit fC for negative m.

The general case of any element of the mapping class group GC is treated using
Proposition 4.2 in the following theorem.

Theorem 4.8. Let g∈GC be an arbitrary homeomorphism fixing the post-critical set
pointwise. Let 	ψ:GC!GC be the map defined in Proposition 4.1. The orbit of g under
the iteration of 	ψ will land either on 1, on T , or on T−1. In the first case g ·fR is
equivalent to the rabbit, in the second case it is equivalent to the airplane and in the last
to the corabbit.

This theorem gives an algorithm solving the general “twisted rabbit question”. Note
that due to the fact that 	ψ is contracting on GC , this algorithm has linear complexity
with respect to the word-length of elements of GC .

Note also that in Theorem 4.7 the typical answer is airplane, and exponentially
few values of m yield “rabbits” or “corabbits”. This seems to happen quite often on
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cyclic subgroups of GC . On the other hand, on the cyclic subgroup 〈ST 2〉 all twists are
“rabbits”; and on the subgroup 〈ST 〉 there are roughly as many “rabbits” as “airplanes”:
(ST )m ·fR is equivalent to

fR, if m<−2, m=2n−3 and n’s 4-adic expansion has only 0’s and 3’s,
fC , if m>−2, m=2n−1 and n’s 4-adic expansion has only 0’s and 3’s,
fR, if n≡ 0 (mod 2),
fA, if n≡ 1 (mod 2) in the cases not covered above.

This is because 	ψ((ST )2m)=S−mT−1
and 	ψ((ST )2m+1)=T 2S−m; calculations are

similar to those of Proposition 4.3.
These phenomena can ultimately be traced to the following reason: the subgroup

Domψ3 of GC has index 8:

Domψ3 = 〈S4, T 4, ST 2, S−2T 2S, S−1T 2S2, ST , ST−1
, STS , ST−1S〉.

The map ψ3 is defined on these generators by ψ3(S4)=S, ψ3(T 4)=T and all other
generators are mapped to 1.

5. Dynamics on the moduli space

In the previous sections, we have computed a virtual endomorphism ψ of the mapping
class group GC associated with the bimodule F of branched coverings with the ramification
graph of the rabbit polynomial. This virtual endomorphism is given by

ψ(T 2) =S−1T−1, ψ(S) =T and ψ(ST ) = 1.

This virtual endomorphism is associated to a self-similar action of GC on the bi-
nary tree. Let us show that this action coincides with the iterated monodromy action
associated with the rational function F (w)=1−1/w2.

The critical points of 1−1/w2 are 0 and ∞. Their orbit is

0 7−!∞ 7−! 1 7−! 0.

Let us take the fixed point t≈0.8774+0.7449i as our basepoint. The fundamental
group of Ĉ\{0, 1,∞} is generated by the loops going in the negative direction around
0 and 1. Let us denote the first by X and the second by Y (see the solid lines on the
left- and right-hand sides of Figure 5, respectively). Let us choose the connecting paths
`0 and `1, so that `0 is the trivial path at t, and `1 connects t to −t passing above the
puncture 0, as shown in the right-hand side of Figure 5.
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f−1
R (X)

X

f−1
R (Y )

`1

Y

Figure 5.

We then get the following recursion for the iterated monodromy group of F :

X = 〈〈Y, 1〉〉 and Y = 〈〈1, X−1Y −1〉〉σ.

Next Y 2=〈〈X−1Y −1, X−1Y −1〉〉 and Y −1XY =〈〈1, Y 〉〉. We see that the virtual endo-
morphism associated with the wreath recursion is given by

X 7−!Y, Y 2 7−!X−1Y −1 and Y −1XY 7! 1.

It is therefore precisely the virtual endomorphism ψ associated to F, if we identify
X with S and Y with T .

5.1. Moduli and Teichmüller spaces

This coincidence has a nice explanation in terms of Teichmüller theory. Let P⊂S2 be
a finite subset of the sphere. Then the Teichmüller space TP modelled on (S2, P ) is
the space of homeomorphisms τ :S2!Ĉ, where τ1 and τ2 are identified if there exists a
biholomorphic isomorphism Θ: Ĉ!Ĉ (i.e. an element of the Möbius group) such that
Θ�τ1=τ2 on P and Θ�τ1 is isotopic to τ2 relative to P .

The moduli space MP of (S2, P ) is the space of all injective maps P ↪!Ĉ modulo
post-compositions with elements of the Möbius group. The Teichmüller space TP is the
universal cover of the moduli space MP , where the covering map is the restriction map
of τ∈TP to P .
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Let now f :S2!S2 be a branched covering with post-critical set P . Then for every
τ∈TP there exists a unique element τ ′∈TP such that we have a commutative diagram

S2

τ ′

��

f
// S2

τ

��

Ĉ
fτ // Ĉ

(11)

and fτ =(τ ′)−1 ·f ·τ : Ĉ!Ĉ is a rational function. Let us write τ ′=σf (τ). The map
σf : TP!TP is analytic and weakly (i.e. non-uniformly) contracting (see [10] or [4]).

Let us return to the case when P is the post-critical set of the rabbit polynomial. The
moduli space MP is the set of maps τ |P : {0, c, c2+c,∞}↪!Ĉ modulo post-compositions
with Möbius transformations. We may assume, applying an appropriate element of the
Möbius group, that 0 is mapped by τ to 0, c to 1 and ∞ to ∞. Then the points
of the moduli space are uniquely determined by the value of τ |P (c2+c)=w. We have
w /∈{0, 1,∞}, since the map τ |P is injective.

Therefore, the moduli space is isomorphic to the punctured sphere Ĉ\{0, 1,∞},
where the point w∈Ĉ\{0, 1,∞} corresponds to the element τ |P such that τ |P (∞)=∞,
τ |P (0)=0, τ |P (c)=1 and τ |P (c2+c)=w.

Let f∈F be arbitrary. Recall that F is the set of degree-two branched coverings
of Ĉ with critical points 0 and ∞, whose ramification graph coincides with that of the
rabbit polynomial.

Let τ be arbitrary. Suppose that the projection of τ ′=σf (τ) on the moduli space is
given by the point w0∈Ĉ\{0, 1,∞}, and the projection of τ is given by w1∈Ĉ\{0, 1,∞}.
Then the rational function fτ in the diagram (11) is a degree-two map having critical
points at 0 and ∞, and satisfying

fτ (∞) =∞, fτ (0)= 1, fτ (1)=w1 and fτ (w0) = 0,

since fτ |P =(τ ′|P )−1 ·f |P ·τ |P .
We conclude that fτ is a quadratic polynomial. It is of the form az2+1, since 0 is

critical and fτ (0)=1. We get therefore

a+1 =w1 and aw2
0+1 =0,

hence a=−1/w2
0, so that

w1 =1− 1
w2

0

.

We have thus obtained the following description of the action of the pull-back map
σf on the moduli space.



28 l. bartholdi and v. nekrashevych

Proposition 5.1. The correspondence σf (τ) 7!τ on the Teichmüller space is pro-
jected on the moduli space MP =Ĉ\{0, 1,∞} to the rational function

F :w 7−! 1− 1
w2

.

Suppose now that h∈GC is an arbitrary element of the mapping class group of
C=Ĉ\P . It defines an automorphism of the Teichmüller space by pre-composition:
τ 7!h·τ . The mapping class group GC is the fundamental group of the moduli space MP

and the action of h on TP coincides with the corresponding deck transformation. Note
that if we identify elements of TP with paths in MP , then the action of GC by deck
transformations is given by pre-composition of paths; therefore both actions of GC are
left actions.

Let f=fR denote the rabbit polynomial. The corresponding point of the moduli
space is given by the identity map {0, c, c2+c,∞}!Ĉ. After normalization, we see
that the corresponding point of MP =C\{0, 1} is the fixed point (c2+c)/c=t≈0.8774+
0.7449i of the rational function 1−1/w2.

Let τ0∈TP be the point of the Teichmüller space given by the identity map Ĉ!Ĉ. It
is projected onto the point t of the moduli space MP . Every point τ∈TP can be identified
with the homotopy class of a path `τ in MP starting at t, ending at the projection of τ
and equal to the image of a path in TP starting at τ0 and ending at τ . The homotopy
class `τ is uniquely defined and we have `h·τ =γh ·`τ , where γh∈π1(MP , t) is the loop
corresponding to h∈GC .

Proposition 5.2. For all τ∈TP , h∈GC and f∈F the following equalities hold :

σh·f (τ) =h·σf (τ) and σf ·h(τ) =σf (h·τ).

If τ∈F corresponds to a path `τ in MP , then σfR
(τ) is represented by the path

F−1(`τ ) [t], where F (w)=1−1/w2.

Proof. Consider the following commutative diagram:

S2

h·σf (τ)

��

h // S2

σf (τ)

��

f
// S2

τ

��

h // S2

h−1·τ
��

Ĉ
id // Ĉ

fτ // Ĉ
id // Ĉ

(12)

It implies that σh·f (τ)=h·σf (τ) and σf ·h(h−1 ·τ)=σf (τ) for all h∈GC and τ∈TP . The
last equality implies that σf ·h(τ)=σf (h·τ) for all τ∈TP .

The second statement is a direct corollary of Proposition 5.1.
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Consider now an arbitrary element h∈GC and the composition h·fR. It is known
(see [4]) that the orbit of τ0 under iteration of σh·fR

will converge to a point τ such that
σh·fR

(τ)=τ , and the polynomial fτ in the diagram (11) for f=h·fR is the polynomial
which is Thurston equivalent to h·fR.

Let γh be the loop in MP corresponding to h∈GC . By Proposition 5.2, we have
σh·fR

(τ0)=h·σfR
(τ0)=h·τ0, hence the path representing σh·fR

(τ) is γh.
If `n is the path representing σ�n

h·fR
(τ0), then the path representing the point

σ
�(n+1)
h·fR

(τ0) =h·σfR
(σ�n

h·fR
(τ0))

is γh ·F−1(`n)[t], by Proposition 5.2. Consequently, the path representing the limit point
τ is

`τ = γ
(0)
h γ

(1)
h γ

(2)
h γ

(3)
h ...,

where γ
(0)
h =γh and γ

(n)
h is the preimage of γh under F �n which starts at the end of

γ
(n−1)
h .

The endpoint of the path `τ is one the three fixed points of 1−1/w2. It is easy
to see that the fixed point t≈0.8774+0.7449i corresponds to the rabbit, the point t̄≈
0.8774−0.7449i corresponds to the corabbit and the point ≈−0.7549 corresponds to the
airplane.

See for instance Figure 6, where the paths `τ , for h=Y =T and h=Y −1=T−1, are
indicated.

One can see that in the first case the path `τ converges to the fixed point corre-
sponding to the airplane and in the second case it converges to t̄, which corresponds to
the corabbit. This can be shown after a detailed analysis of the dynamics of the Fatou
components of the rational function F .

Proposition 4.1 can also be interpreted in these terms: namely, we have ψ=φF . If
h belongs to the domain of the virtual endomorphism ψ, then the corresponding loop
γh∈π1(MP , t) belongs to the domain of the virtual endomorphism φF associated with F .
We have then that the path converging to the fixed point of σh·fR

is of the form

γh ·F−1(γh)[t]·F−2(γh)[t1]·F−3(γh)[t2] ...,

where tn is the endpoint of F−n(γh)[tn−1]. This path is equal to

γhγg ·F−1(γg)[t]·F−2(γg)[t′1]·F−3(γg)[t′2] ...,

where g=φF (h)=F−1(h)[t] and t′n is the endpoint of F−n(γg)[t′n−1]. This proves that
h·fR and ψ(h)·fR are combinatorially equivalent. Similar arguments work also in the
case when h does not belong to the domain of ψ (see [8, Theorem 6.6.3]).
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F−1(γT )

A

R

γT

C

F−1(γ−1
T )

Figure 6. The path `τ for h=T and T−1.

6. Preperiod 1, period 2

There are three families of quadratic topological polynomials with three post-critical
points: the first contains the rabbit and the airplane, and its ramification graph is a
cycle of length 3. The next family has ramification graph with preperiod 1 and period 2;
it contains the polynomial fi(z)=z2+i and f−i=z2−i, as well as obstructed topological
polynomials. The last family has ramification graph with preperiod 2 and a fixed post-
critical point; it contains the polynomials ≈z2−1.5434 and ≈z2−0.2282±1.1151i, and
is dealt with in §7.

6.1. The iterated monodromy group

Let us consider first the polynomial fi(z)=z2+i. The dynamics of fi on its post-critical
set is

i 7−!−1+i 7−!−i 7−!−1+i.

Let us compute the iterated monodromy group of fi. We again take +∞ as the
basepoint. Let α be the loop going around i in the positive direction and connected to
the basepoint by the external ray R1/6 and the arc

[
0, 1

6

]
of the circle at infinity. The

loops β and γ go around the points −1+i and −i, and are connected to the circle at
infinity by the rays R1/3 and R2/3, and to the point +∞ by the arcs

[
0, 1

3

]
and

[
0, 2

3

]
,
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i (γ)

f−1
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Figure 7. Computation of IMG(z2+i).

respectively. The connecting paths `0 and `1 are, as usual, the trivial path and the upper
semicircle. See the loops α, β and γ and their preimages in Figure 7. Computation of
the wreath recursion gives

Φfi(α) = 〈〈α−1β−1, βα〉〉σ, Φfi(β) = 〈〈α, γ〉〉 and Φfi(γ) = 〈〈β, 1〉〉.

We see that the corresponding elements α, β and γ of IMG(fi) are of order 2.
Let F be the set of homotopy classes of branched coverings which have the same

ramification graph as fi. Namely, F is the set of homotopy classes of degree-two topo-
logical polynomials f such that the finite post-critical set of f has three different points
c1, c2 and c3 which are mapped in the following way:

c1 7−! c2 7−! c3 7−! c2

(where we assume that the same points c1, c2 and c3 are chosen for all elements of F).
Among quadratic polynomials f(z)=z2+c, only z2+i and z2−i have this ramifica-

tion graph, since the set of the roots of the equation f3(c)=f(c) is {0,−1, i,−i,−2}, but
z2, z2−1 and z2−2 have different post-critical dynamics.

Note, however, that there exist obstructed topological polynomials in F. A way to
construct one is shown in Figure 8. It describes the post-critical points c1, c2 and c3

and curves connecting them to infinity in the right part of the figure. The left-hand side
shows the preimages of the points and curves. The map folds the horizontal line in two
and maps the critical point f−1

∗ (c1) to c1. It is a homeomorphism from each of the upper
and lower half-planes to the complement of the line connecting c1 to infinity.

Consider the simple closed curve Γ around the points c2 and c3. It has two f∗-
preimages. One is peripheral, and the other is homotopic to Γ. The map f∗ is of
degree 1 on the non-peripheral preimage of Γ, so the curve Γ is an obstruction.
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Figure 8. An obstructed topological polynomial.

Let us compute the iterated monodromy group of the map f∗. Let t be the fixed point
of f∗ on the circle at infinity, as shown in Figure 8, and let the connecting paths from t

to its preimages be the trivial path `0 at t and the semicircle `1 going in the positive
direction from t to its other preimage. Let α, β and γ be generators of π1(Ĉ\Pf∗ , t)
following the circle at infinity and the arcs towards the points c1, c2 and c3, respectively,
encircling the point in the positive direction, and returning back to t, as shown in the
right part of Figure 8.

It is easy to see from Figure 8 that the wreath recursion is

Φf∗(α) = 〈〈α−1, α〉〉σ, Φf∗(β) = 〈〈α, γ〉〉 and Φf∗(γ) = 〈〈1, γβγ−1〉〉. (13)

Direct computation shows that the corresponding elements α, β and γ of the iterated
monodromy group are of order 2 and that β and γ commute. Conjugating IMG(f∗) by
∆=〈〈α∆,∆〉〉, we see that the generators of IMG(f∗) can be defined by the recursion

�α=σ, β̄= 〈〈�α, �γ〉〉 and �γ= 〈〈1, β̄〉〉.

This is one of the Grigorchuk groups Gω from [5], namely that given by ω=(01)∞.
One of the ways to see that it is not the iterated monodromy group of a rational function
(and thus that the map f∗ is not combinatorially equivalent to a polynomial) is to show
that its limit orbispace (see [8, §4.6]) has an isotropy group isomorphic to the Klein group
C2×C2, namely 〈β̄, �γ〉.

Note also that the composition of f∗ with a power of the Dehn twist about the curve
Γ is also obstructed (with the same obstruction Γ).
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6.2. The moduli space

Let us compute the virtual endomorphism ψ on the mapping class group GC of the
punctured plane C\P=C\{i, i−1,−i}, via the moduli space approach.

Let F be, as before, the set of homotopy classes of branched coverings having the
same ramification graph as z2+i. The moduli space of Ĉ\P is again a plane with two
punctures. We normalize the mappings P ↪!Ĉ so that ∞ is mapped to ∞, 0 is the critical
value of f∈F and f(0)=1. Let us compute the action of the inverse of σf on the moduli
space in this case. We have

fτ (0)= 1, fτ (1)=w1 and fτ (w0) = 1.

We also have that 0 is the critical value of the quadratic polynomial fτ . Hence fτ is of the
form (az−1)2, where 1/a is its critical point. The last equality implies that aw0−1=1
(as aw0−1=−1 would give w0=0), hence a=2/w0, so

w1 = fτ (1)=
(

2−w0

w0

)2

.

Therefore, the correspondence σf (τ) 7!τ is projected to the rational function

F (w) =
(

2−w
w

)2

on the moduli space (compare with Proposition 5.1).
The fixed points of the rational function F (w) are w=1 and w=±2i. The point 1

belongs to the post-critical set and is the puncture of the moduli space. Thus, it does not
correspond to any quadratic polynomial (and, as we will see, corresponds to obstructed
topological polynomials). The point 2i corresponds to the polynomial

4
(2i)2

(
z− 2i

2

)2

=−(z−i)2,

which is conjugate to z2+i. The point −2i corresponds to −(z+i)2, which is conjugate
to z2−i.

The critical points of the rational function F (w) are w=2 and w=0. We have the
following dynamics on the post-critical orbit:

2 7−! 0 7−!∞ 7−! 1 7−! 1.

Therefore, the post-critical set of F (w) is {0, 1,∞}. The Julia set of F is the whole
sphere, since there are no superattracting cycles. Actually, the Thurston orbifold OF of
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F is (2, 4, 4), i.e. the orbifold of the action on C of the group of affine transformations
{z 7!ikz+a+bi:k, a, b∈Z}. Moreover, F is induced on the orbifold OF by the expanding
map z 7!(1+i)z of C.

To show this explicitly, consider the Weierstrass function

℘(z) =
1
z2

+
∑

ω∈Z[i]\{0}

[
1

(z+ω)2
− 1
ω2

]

associated to the lattice Z[i].
It follows from its definition that ℘ is an even function and that, by the choice of

the lattice Z[i], we have ℘(iz)=−℘(z). Consequently, i℘′(iz)=−℘′(z) and thus

℘′(iz) = i℘′(z).

It is known that
(℘′(z))2 =4℘3(z)−g2℘(z)−g3, (4)

with g2=60s4 and g3=140s6, where sm=
∑

ω∈Z[i]\{0} ω
−m are the Eisenstein series. It is

clear that s6=0 because Z[i] has a 4-fold symmetry, so g3=0.
Another classical fact is the addition formula

℘(z1+z2) =−℘(z1)−℘(z2)+
1
4

(
℘′(z1)−℘′(z2)
℘(z1)−℘(z2)

)2

.

Let us then compute ℘((i+1)z):

℘(iz+z) =−℘(iz)−℘(z)+
1
4

(
℘′(iz)−℘′(z)
℘(iz)−℘(z)

)2

=
1
4

(
(i−1)℘′(z)
−2℘(z)

)2

=− i

8
4℘2(z)−g2

℘(z)
.

The function ℘:C!Ĉ realizes the universal covering of the orbifold (2, 2, 2, 2). The
group of deck transformations of this covering is the group of all affine transformations of
the form z 7!±z+c, with c∈Z[i]. In other words, this group is the group of holomorphic
automorphisms α:C!C such that ℘(α(z))=℘(z).

It follows that the function ℘2:C!Ĉ realizes the universal covering of the orbifold
(2, 4, 4) for which the group G of deck transformations is the group of affine transforma-
tions of the form z 7!ikz+c, with c∈Z[i].

We have

℘2((i+1)z) =− 1
64

(
4℘2(z)−g2

℘(z)

)2

=− (℘2(z)−g2/4)2

4℘2(z)
.

(4) Here ℘3(z)= (℘(z))3.
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Figure 9. The fundamental group of the orbifold (2, 4, 4).

It follows that the map z 7!(i+1)z on the universal cover C induces on the orb-
ifold G\C the rational map t 7!−(t−g2/4)2/4t. Performing the change of variables
t=(g2/4)/(1−w), we see that this rational map is conjugate to w 7!((2−w)/w)2.

We conclude that the iterated monodromy group of the rational function

w 7−!
(

2−w
w

)2

is isomorphic to the group of affine transformations z 7!ikz+c, c∈Z[i] (see [8, §6.3.2.2]
and [1, §5]).

This group is the group of the orientation-preserving automorphisms of the tiling
of the plane by triangles shown in Figure 9. The triangles are fundamental domains of
the group action. We assume that the vertices of the grid coincide with the Gaussian
integers Z[i].

Let us cut the Riemann sphere Ĉ along the ray [0,+∞] consisting of the non-negative
reals and infinity. This ray will then contain the post-critical set of F (z)=((2−z)/z)2.
It is also easy to see that the preimage of this cut in the universal cover C of the orbifold
OF is precisely the union of the lines of the tiling in Figure 9. In particular, the preimage
of Ĉ\[0,∞] is the disjoint union of the open triangles of the tiling.

6.3. The iterated monodromy group on the moduli space

Let us compute the recursion defining IMG(F ). We take t=2i as basepoint. The iterated
monodromy group is generated by the loops a and b going in the positive direction
around 0 and 1, respectively, as shown in Figure 10. The loops a and b correspond to
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2i

a b

0 1

Figure 10. The generators of IMG(F ).

−1+i
i

b

a

−i

Figure 11. The generators a and b as Dehn twists.

the right Dehn twists about the curves going around i, −i and −1+i, −i, respectively
(see Figure 11).

The preimages of 2i under F are 2i and 1
5 (4−2i). Let `0 be the trivial path at 2i

and let `1 be the path connecting 2i to 1
5 (4−2i) passing between 1 and 2, as shown in

Figure 12.
The preimages of the loops a and b are shown in Figure 12. We see that the wreath

recursion is
Φ(a) =σ and Φ(b) = 〈〈b−1a−1, b〉〉. (14)

The virtual endomorphism associated with the first coordinate of the wreath recur-
sion Φ on the mapping class group is given by

ψ(a2) = 1, ψ(b) = b−1a−1 and ψ(ba) = b, (15)

since
Φ(a2) = 1, Φ(b) = 〈〈b−1a−1, b〉〉 and Φ(ba) = 〈〈b, b−1a−1〉〉.

This virtual endomorphism has the property that fi ·g=ψ(g)·fi for every g in the
index-two subgroup Domψ=〈a2, b, ba〉 of the mapping class group GC . The proof is the
same as in the case of the rabbit polynomial.
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2i

`1

0 1

F−1(a)

2i

`1

0 1

F−1(b)

Figure 12. Computation of IMG(F ).

Let us see now what happens on the universal cover of the orbifold OF . For every
path γ in the moduli space MP and for every preimage ζ∈C of the startpoint of γ in
the universal cover of the orbifold OF , there exists a unique preimage of γ in C which
starts at ζ.

Let t∈C be the preimage of 2i under the covering map C!OF which belongs to
the triangle ∆ with vertices 0, 1 and 1

2 (1+i). Note that 0 and 1∈C are preimages of
1∈OF , that 1

2 (1+i) is a preimage of ∞∈OF , and that 1
2 is a preimage of 0∈OF .

Then the preimages of the loops a and b starting at t go in the positive direction
around the points 1

2 and 1, if we assume that the universal covering map C!OF is
orientation-preserving (see Figure 13). We use here the fact that the segment

[
1
2 , 1

]
is a preimage of the interval [0, 1]⊂OF . It follows that the elements a and b of the
fundamental group of MP act on the plane C via the affine maps

A(z) =−z+1 and B(z) = iz+1−i,

respectively. Recall that this has to be a left action.

The element b−1a−1 of the fundamental group π1(MP , 2i) is a small loop around ∞
connected to the basepoint by a curve disjoint from the positive ray. It follows that the
preimage of the loop b−1a−1 in the triangle ∆ is the top curve shown in Figure 13.

We have

B−1A−1(z) = iz+1 and BA(z) = iz.

The preimage of the loop ba in the triangle ∆ goes around the vertex 0.

Let TP be the Teichmüller space modeled on (Ĉ, P ) for P={i,−1+i,−i,∞}. We
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1
2 (1+i)

b−1a−1

0
a

1
2

b

1

Figure 13. Loops a and b in the universal cover C.

have the following commutative diagram

TP

��

// C

��

MP
� � // OF ,

where TP!MP is the natural projection, MP ↪!OF =Ĉ is the identical embedding and
C!OF is the universal covering map. The map TP!C exists, since TP is the universal
cover of MP . It is defined uniquely up to an element of the group G={ikz+c:c∈Z[i]}
acting on C.

Let τ0∈TP be the original complex structure on Ĉ. It is projected to 2i∈MP and
we may assume that its image ζ in C belongs to the triangle ∆. This fixes uniquely the
map TP!C.

We know that the correspondence τ 7!σfi
(τ) on TP is semi-conjugated via the map

TP!C to an affine map

Σ: z 7−! ik
z

1+i
+ξ

for some k∈Z and ξ∈C (since F is induced by multiplication by (1+i) on C). The point
ζ is fixed by Σ, since τ0 is fixed under σfi .

The preimage of the positive ray under the action of F is the whole real line. The
preimage of the negative ray in the universal cover C divides the triangle ∆ into two
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F−1(b)

F−1(a)

1
2 (1+i)

F−1(b)

F−1(a)

0 1

Figure 14.

similar triangles; see Figure 14. This figure also displays the preimages of the curves
F−1(a) and F−1(b).

We know from the wreath recursions (14) that the F -preimage of b which starts at
2i coincides with b−1a−1, which is a loop around infinity. This shows that the point ζ
belongs to the right triangle in Figure 14.

It follows that Σ(z)= 1
2 (i−1)z+1 and, therefore,

ζ =
1+i
2+i

=
3+i
5
.

6.4. The answer

We are now in a position to determine the combinatorial equivalence class of the Thurston
maps considered in the non-obstructed case. The obstructed maps will be considered
later.

Let π be the homomorphism from the mapping class group GC onto the affine group
G={z 7!ikz+c : k∈Z and c∈Z[i]} defined on the generators by

π(a) =A: z 7−!−z+1 and π(b) =B: z 7−! iz+1−i.

We have shown above that π is the canonical epimorphism of GC onto the iterated mon-
odromy group IMG(((2−z)/z)2). Note that multiplication in the affine group G corre-
sponds to left action, i.e. π(g1g2)=π(g1)�π(g2).

Theorem 6.1. Let h∈GC be an element of the mapping class group. Write π(h) as
the affine transformation π(h)(z)=ikz+c. Then

� if k=0 and (c−i−1)/(2+i) /∈Z[i], then fi ·h is equivalent to fi;
� if k=1 and (c−i−1)/(1+2i) /∈Z[i], then f ·h is equivalent to f−i;
� in all other cases, f is obstructed.

Let Q be the group (Z[i]/5Z[i])oZ/4 of order 100, where the action of Z/4 is by
multiplication by i. Then the answer (in {fi, f−i, obstructed}) depends only on the image
of h in Q under the homomorphism GC!Q mapping a to (−1, 2) and b to (1−i, 1).
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0 5 10 15

15i 15+15i

Figure 15.

Therefore, unlike in the rabbit/airplane case, the answer is periodic. See Figure 15
for dependence of the answer on the element π(h) of the group G. The lower left black
triangle is the origin (it corresponds to the trivial element of G). For every other triangle
∆ of the picture there is a unique element h mapping the original triangle to ∆. If ∆
is black, then fi ·h is equivalent to z2+i, if ∆ is grey, then fi ·h is equivalent to z2−i.
White triangles correspond to obstructed maps. The picture is periodic with period 5 in
both directions.

Proof of Theorem 6.1. By Proposition 5.2, the map σfi·h is projected to the affine
transformation Σ�π(h) of C. The fixed point of σfi·h, if it exists, is mapped to the fixed
point of Σ�H(z)= 1

2 (i−1)(ikz+c)+1 in C, which is

ξ=
1
2 (i−1)c+1
1− 1

2 (i−1)ik
=− c−i−1

i+1+ik
.

Let us consider the possible values for k in turn.
If k=0 then ξ=−(c−i−1)/(i+2), which is in the same G-orbit as (c+1)/(i+2).

The possible residues modulo i+2 are 0, ±i and ±1, which, modulo multiplication by
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powers of i, are either 0 or 1. Consequently, if (c+1)/(i+2)∈Z[i], then either ξ belongs
to the G-orbit of 0, or it belongs to the G-orbit of 1/(i+2), which coincides with the
G-orbit of ζ= 1

5 (3+i). If ξ belongs to the orbit of 0, then the map fi ·h is obstructed. If
it belongs to the orbit of ζ, then fi ·h is equivalent to fi(z)=z2+i.

If k=1 then ξ=−(c−i−1)/(2i+1), which is in the same G-orbit as (c+i)/(2i+1).
Here again, if (c+i)/(2i+1)∈Z[i], then fi ·h is obstructed, otherwise it is equivalent
to z2−i.

If k=2 then ξ=−(c−i−1)/i, which is integral, and we get an obstructed map.

If k=3 then ξ=−c+i+1, and we also get an obstructed map.

6.5. The obstructed cases

No description of combinatorial classes of obstructed Thurston maps follows directly from
Thurston’s Theorem 1.1; therefore we have to treat the obstructed cases separately.

Let F be the set of quadratic topological polynomials f : Ĉ!Ĉ with finite critical
value i, and such that f(i)=−1+i, f(−1+i)=−i and f(−i)=−1+i. Let F be the set of
homotopy classes of elements of F relative to P={∞, i,−1+i,−i}. Let GC be the map-
ping class group of Ĉ\P . Recall that F is a GC -bimodule by pre- and post-composition.

Proposition 6.2. For every f∈F there exist elements h, g∈GC such that h·f ·g is
equal to the polynomial fi(z)=z2+i.

In the terminology of [8], this means that the GC -bimodule F is irreducible.

Proof. Let TP and MP denote the Teichmüller and the moduli space of Ĉ\P , re-
spectively. We identify, as above, MP with Ĉ\{0, 1,∞}, so that the correspondence
σf (τ) 7!τ on TP is projected to the rational function F (w)=((2−w)/w)2 on MP .

Let ζ=2i be the fixed point of F corresponding to the polynomial z2+i. Let τi be
an arbitrary preimage of ζ in TP . Then the image of σf (τi) in MP is equal to one of the
F -preimages of ζ, i.e. either to 2i or to 1

5 (4−2i).

The path σf (a) is a lift to TP of an F -preimage of the loop a in MP . We know,
by (14), that both F -preimages of a are paths starting at one of the points 2i, 1

5 (4−2i)
and ending at the other.

Consequently, if the image of σf (τi) in MP is equal to 1
5 (4−2i), then the image of

σf ·a(τi)=σf (a·τi) is equal to 2i (see Proposition 5.2).

Hence, either σf (τi) or σf ·a(τi) belongs to the π1(MP )-orbit of τi, i.e. there exists
a homeomorphism h∈GC such that σh·f (τi)=h·σf (τi)=τi or σh·f ·a(τi)=h·σf ·a(τi)=τi.
But this implies that either h·f or h·f ·a is combinatorially equivalent to fi.
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Corollary 6.3. For every branched covering f∈F there exists g∈GC such that
f=fi ·g.

Proof. This follows from Proposition 6.2 and the fact that the associated virtual
endomorphism ψ is onto; see (15).

It will be more convenient for us to proceed with the branched covering fi ·a, which is
obstructed by Theorem 6.1. We now show that it is equivalent to the branched covering f∗
shown in Figure 8.

For that purpose, note that the twist a acts on the generators α, β and γ of the
fundamental group of the punctured plane in the same way as the element h in (6).
Applying that twist to the wreath recursion Φfi , we see that the wreath recursion Φfia

is given by (13), so that the maps fia and f∗ are equivalent, by Proposition 3.1.
Let φ denote the virtual endomorphism of GC such that f∗ ·g=φ(g)·f∗. It follows from

the wreath recursion Φ defined by (14) that φ is the virtual endomorphism associated
with the second coordinate of the wreath recursion Φ, and thus has domain H=〈a2, b, ba〉
and is given by

φ(a2) = 1, φ(b) = b and φ(ba) = b−1a−1. (16)

Let us introduce the following subgroups EnCGC (see [8, §2.13.1]). We set E0={1}
and

En = {g ∈H <GC :φ(g) and φ(ga) belong to En−1}.

In other words, En is the kernel of the wreath recursion Φn:GC!GC oS(Xn) describing
the action and the restrictions of GC on words of length n.

It follows that En are normal subgroups and that En>En−1. Let

E∞ =
⋃
n>0

En.

Lemma 6.4. If g∈E∞ then for all f∈F the branched coverings f ·g and f are com-
binatorially equivalent.

Proof. We have f=f∗ ·h for some h∈GC , by Corollary 6.3. Let us prove the statement
by induction on n such that g∈En. The statement is trivial for n=0. We have

f∗ ·hg= f∗ ·hgh−1 ·h=φ(hgh−1)·f∗ ·h=φ(hgh−1)·(f∗ ·hφ(hgh−1))·φ(hgh−1)−1.

Since hgh−1∈En, we have φ(hgh−1)∈En−1. By the inductive hypothesis, f∗ ·hφ(hgh−1)
is combinatorially equivalent to f∗ ·h. Thus, it follows that f∗ ·hg is combinatorially
equivalent to f∗ ·h.



thurston equivalence of topological polynomials 43

Corollary 6.5. The combinatorial equivalence class of a branched covering f∗ ·g
depends only on the image of g in the quotient group G̃=GC/E∞.

It is easy to see that the wreath recursion Φ induces a well-defined wreath recursion
(which we will also denote by Φ) on G̃=GC/E∞, given by the same formula on the
generators. We also denote by φ the virtual endomorphism induced on G̃ by the virtual
endomorphism φ of G.

We have shown earlier that the iterated monodromy group of F (w)=((2−w)/w)2 is
the quotient of GC given by the presentation

IMG(F ) =G=Z[i]oZ/4 = 〈A,B |A2, (AB)4, B4〉. (17)

The virtual endomorphism φ induces a virtual endomorphism of G (still denoted φ),
which is contracting on G.

In GC we have the equalities

φ(a2) = 1, φ((ab)4) = b−1a−2b and φ(a−1(ab)4a) = a−2, (18)

which imply that a2∈E1 and (ab)4∈E2.
The following lemma computes the nucleus of the wreath recursion on G̃.

Lemma 6.6. For every g∈G̃ there exists n such that, for every word v∈Xn of length
greater than n, the restriction g|v (computed with respect to the wreath recursion Φ)
belongs to the set

N = {a, ab, ab2, ab3, ab, ba, (ab)2, b−2ab, abab2}±1∪{bk}k∈Z.

Proof. It is sufficient to show that N is state-closed, and that there exists m such
that modulo the relations a2=(ab)4=1 obtained in (18) we have A|v⊆N for all words v
of length m, where

A=N ·{1, a, b, b−1.}

Figure 16 shows the Moore diagram of the set N .
We see that N is state-closed. Therefore it is sufficient to check our condition for

A=N ·{a, b, b−1}\N . Moreover, multiplication by a from either side does not change the
restrictions, therefore, we may take A equal to

N ·{b, b−1}\N = {ab4, abab−1, b−2ab2, abab3, b−1ab−1, b−2ab−1, b−3ab, b−3ab−1,

ab−1ab, ab−1ab−1, b−1ab3, b−2ab−1ab, b−2ab−1ab−1 = b−1aba}.
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b−1ab

b−2a

(ab)2

ab2

b4k+2

a b4k

1

1

1

1

1

1

1

0

0

0

0

0
0

0

b−1ab2
ab3 aba

b−1(ab)2

b4k−1

ab

b−1a

b4k+1

(ab)2b
ab−1a b−3a

b−2ab

1 1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

0

Figure 16. Nucleus of GC .

Taking into account again that multiplication by a does not change the restrictions, and
replacing some of the elements by their inverses (as N=N−1), we reduce our checking
to the set

A= {bab−1, b−2ab2, bab3, b−1ab3, b−2ab−1ab}.

But we have

bab−1 = 〈〈b−1ab−1, bab〉〉σ= 〈〈(ab)2a, a(ab)2〉〉σ,

b−2ab2 = 〈〈abab3, b−3ab−1a〉〉σ= 〈〈a·bab3, (a·bab3)−1〉〉σ,

bab3 = 〈〈b−1ab3, bab〉〉σ= 〈〈b−1ab3, a(ab)2〉〉σ,

b−1ab3 = 〈〈a·b4, b−1ab〉〉σ,

b−2ab−1ab= 〈〈(ab)2 ·a, b−2〉〉,

hence we may take m=4, since the longest chain staying outside N is

b−2ab2 7−! abab3 7−! b−1ab3 7−! ab4 7−! b4.
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Lemma 6.7. Let P=
⋂

n>1 Domφn be stabilizer of the path 111 ... in the group G̃.
For every g∈P there exists n such that φn(g)∈〈b〉.

Proof. Let g∈P stabilize the path 111 ... . There exists n such that φn(g)∈N , where
N is given by Lemma 6.6. The sequence (φm(g))m>n must pass through inactive (white)
states of the Moore diagram of N (Figure 16), and follow arrows labeled by 1. The
only such infinite paths in the Moore diagram are the loops attached to the powers of b.
Consequently, N∩P=〈b〉.

Proposition 6.8. Every branched covering f∈F is combinatorially equivalent either
to z2+i, or to z2−i, or to f∗ ·bk for some k∈Z, where b is, as before, the Dehn twist
about the curve Γ encircling the points −1+i and −i. The branched coverings f∗ ·bk are
obstructed, with obstruction Γ.

Proof. Consider the map �φ: G̃!G̃ defined by

�φ: g 7!
{
φ(g), if w belongs to the domain of φ,
aφ(ga), otherwise.

(19)

Following the line of reasoning used for the rabbit polynomial (see Proposition 4.1),
and using Corollary 6.5, we check the identity f∗ ·g=ψ(g)·f∗. It then follows that the
branched coverings f∗ ·g and f∗ ·�φ(g) are combinatorially equivalent for all g∈G̃.

Lemma 6.6 and the argument of Proposition 4.2 show that it is sufficient to study
the dynamics of the map induced by �φ on the set N∪aN⊂G̃.

Direct computations show that the map �φ on N∪aN has fixed points a and bk, for
k∈Z, and cycles ab$b−a and ab 7!b−2a 7!abab 7!ab.

This shows that for every g∈G̃ there exists n such that �φn(g)∈{a, ab, ab}∪{bk}k∈Z.
Consequently, by Corollary 6.5, every element f∈F is combinatorially equivalent either
to f∗ ·a=fi ·a2, or to f∗ ·ab=fi ·a2b, or to f∗ ·b−1ab=fi ·ab−1ab, or to f∗ ·bk for some k∈Z.

The branched coverings fi ·a2, fi ·a2b and fi ·ab−1ab are combinatorially equivalent
to fi, f−i and fi, respectively, by Theorem 6.1. The branched coverings f∗ ·bk=fi ·abk

are obstructed, also by Theorem 6.1.

The following proposition completely describes the group G̃=GC/E∞.

Proposition 6.9. G̃ is a (non-split) extension of G by the G-module K=Z[〈B〉\G].
It may be given by the presentation

G̃= 〈a, b | a2, (ab)4, [b4, b4w] for all w∈ G̃〉.

We will only need the fact that the order of b in G̃ is infinite, so we give only a
sketch of the proof.
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Proof. Let N denote the normal closure in GC of 〈a2, (ab)4, [b4, b4w] for all w∈GC〉.
We wish to prove that N=E∞.

By comparing GC/N with the presentation (17), we see that the map a 7!A, b 7!B
defines a natural epimorphism GC/N!G, whose kernel K=〈b4w :w∈GC〉N is abelian,
isomorphic as a G-module to Z[〈B〉\G].

A straightforward argument shows that the wreath recursion Φ on GC induces a
wreath recursion (still denoted Φ) on the group GC/N . Furthermore, the virtual endo-
morphism φ: 〈B,BA〉!G is a bijection, and induces a bijection Φ:K!K×K, given by

Φ(b4w) =
{

(1, b4w1), if Φ(w) = (w0, w1),
(b4w1 , 1), if Φ(w) = (w0, w1)σ.

(20)

We first prove that N⊆E∞. We already checked in (18) that the first two generators
of N lie in E∞. We may view equation (20) as a relation in G̃; Lemma 6.6 then implies
that for every w∈G̃ there exists n0(w)∈N such that if n>n0(w) then all coordinates of
Φn(b4w)∈G̃2n

are trivial, except for one, which is equal to b4. Therefore, the elements
b4w1 and b4w2 commute for all w1, w2∈G̃.

We next prove E∞⊆N . Assume for contradiction that En!N for some minimal n;
and choose r∈En\N . Then clearly r∈K, because the action of r on X∗ is trivial, so
the image of r in G is trivial. We have Φ(r)=(r0, r1), with r0, r1∈En−1. Since Φ is a
bijection K!K×K, one of r0 and r1 is non-trivial in GC/N , and we have contradicted
the minimality of n.

Proposition 6.10. None of the maps f∗ ·bk, for k∈Z, are equivalent to each other.

Proof. We may work inside the group G̃, by Corollary 6.5.
Suppose that f∗ ·br and f∗ ·bs are equivalent. Then there exists h∈G̃ such that

h·f∗ ·br=f∗ ·bsh in F. We get hbr ·f∗=f∗ ·bsh, which implies that hbr=φ(bsh), or

b−shbr =φ(h), (21)

by definition of φ and since the left GC -action on the bimodule F is free (which follows, for
instance, from the fact that the GC -bimodule F is isomorphic to the bimodule associated
with the self-covering F (z)=((2−z)/z)2 of the moduli space).

By induction, we get from (21) that for every n,

φn(h) = b−snhbrn.

By Lemma 6.7, there exists n such that φn(h)∈〈b〉. Consequently, h=bm for some
m∈Z, hence b−shbr=h and br−s=1. But this implies that r=s, since the order of b
is infinite.
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Corollary 6.11. Let f be a degree-two topological polynomial with preperiod of
length 1 and period of length 2. Then f is combinatorially equivalent to precisely one of
fi, f−i, or f∗ ·bn for some n∈Z.

Theorem 6.1 describes the equivalence classes of the polynomials fi and f−i. If
f∗ ·g=fi ·ag is an obstructed topological polynomial, then it is equivalent to f∗ ·bn if and
only if there exists m∈N such that �φm(g)=bn in G̃, where �φ: G̃!G̃ is given by (16)
and (19).

7. Preperiod 2, period 1

7.1. Iterated monodromy groups

We next consider the degree-two topological polynomials with ramification graph

c1 7−! c2 7−! c3 7−! c3,

where c1 is the critical value. The calculations are close to those for the rabbit and
airplane polynomials, so will be given in a more condensed manner.

If f(z)=z2+c is a polynomial whose ramification graph has preperiod 2 and period 1,
then the parameter c must be a root of the polynomial x3+2x2+2x+2, i.e. one of
approximately

−0.2282+1.1151i, −0.2282−1.1151i or −1.5437.

The corresponding points of the Mandelbrot set are the landing points of the external
rays at angles 1

4 , 3
4 and 5

12 , respectively. The last angle is particular because, under
doubling, we have

5
12 7−!

5
6 7−!

2
3 7−!

1
3 7−!

2
3 ;

but the dynamical rays with angles 1
3 and 2

3 land at the same point of the Julia set. Let
us denote the corresponding polynomials by f1/4, f3/4 and f5/12.

The wreath recursions are given by

Φf1/4(α)= 〈〈α−1β−1, βα〉〉σ, Φf1/4(β)= 〈〈α, 1〉〉, Φf1/4(γ)= 〈〈γ, β〉〉;
Φf3/4(α)= 〈〈β−1α−1, αβ〉〉σ, Φf3/4(β)= 〈〈1, α〉〉, Φf3/4(γ)= 〈〈γ, β〉〉;

Φf5/12(α)= 〈〈α−1γ−1, γα〉〉σ, Φf5/12(β)= 〈〈α, 1〉〉, Φf5/12(γ)= 〈〈γα, β〉〉.

Here α of ft is a small loop going positively around the critical value and connected to
the circle at infinity by the external ray at angle t, β is connected by the ray at angle 2t,
and γ at angle 0 (for f1/4 and f3/4) or 2

3 (for f5/12). See for example the loops α, β and
γ for the polynomial f1/4 in Figure 17.
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α

β

γ +∞

Figure 17.

Their respective nuclei are

N1/4 = {1, α, β, γ, γαβ , αβ, βα, (βαγ)±1},

N3/4 = {1, α, β, γ, γβα, αβ, βα, (αβγ)±1},

N5/12 = {1, α, β, γ, γα, βγα, αγ, γα, (βγα)±1}.

Direct verification shows that the nuclei are different as automata. It is not hard to
prove that there is no possible obstruction, so every degree-two branched covering with
the given post-critical dynamics is equivalent to precisely one of f1/4, f3/4 or f5/12.

7.2. The iterated monodromy group on the moduli space

As before, we force the post-critical sets to be of the form {0, 1, w}, so that

w∈ Ĉ\{0, 1,∞}

represents a point in the moduli space. A polynomial with critical value 0 and orbit
0 7!1 7!w is of the form f(z)=(az−1)2; then we have

(a−1)2 =w1 and (aw0−1)2 =w1,

so aw0−1=−a+1, hence a=2/(w0+1) and

F (w0) =w1 =
(
w0−1
w0+1

)2

.

The fixed points of F are approximately

−0.6478+1.7214i, −0.6478−1.7214i and 0.2956.
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The fixed point w corresponds to the polynomial (2z/(w+1)−1)2, which is conjugate to
z2−2/(1+w). Direct computation shows that the above fixed points correspond to the
polynomials f1/4, f3/4 and f5/12, respectively.

Let us consider the first point t≈−0.6478+1.7214i, and let a and b be small loops
going around the points 0 and 1 in the positive direction and connected to t by straight
segments. The F -preimages of t are t itself and 1/t≈−0.1915−0.5089i. Take the con-
necting path `0 to be the trivial path at t, and let `1 be a path connecting t to 1/t,
intersecting the real line only once, with the intersection point strictly between 0 and 1.

Then the iterated monodromy group of F is given by the recursions

Φ(a) = 〈〈1, b〉〉σ and Φ(b) = 〈〈b−1a−1, a〉〉.

This wreath recursion is contracting on the free group 〈a, b〉, and has nucleus

N = {1, a, b, ab, a−1b}±1.

Let ψ denote the virtual endomorphism of GC corresponding to projection on the
first coordinate, i.e.

ψ(a2) = b, ψ(b) = b−1a−1 and ψ(aba−1) = a.

Define 	ψ:GC!GC by

	ψ: g 7!
{
ψ(g), if g belongs to the domain of ψ,
aψ(ga−1), otherwise.

(22)

Lemma 7.1. For every g∈GC, there is n∈N such that 	ψn(g)∈{1, a, a−1b}.

Proof. It suffices to compute the orbits of 	ψ on N∪aN . There are fixed points 1
and a, and a cycle ab−1a$a−1b. All the other elements of N∪aN are attracted to these
cycles.

The generators a and b of the mapping class group GC=π1(Ĉ\{0, 1,∞}) correspond
to the right Dehn twists shown in Figure 18, since they correspond to the fixed post-
critical point c3 moving in the positive direction around the critical value c1 and the
other post-critical point c2, respectively.

Computation of the iterated monodromy groups of the maps f1/4 ·a and f1/4 ·a−1b

and their nuclei show that the first branched covering is equivalent to f5/12 and the
second to f3/4.
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a

b

Figure 18. Twisting f1/4.

Theorem 7.2. Let g∈〈a, b〉 be an arbitrary element of the mapping class group.
Then f1/4 ·g is equivalent to f1/4, f3/4 or f5/12 if and only if the orbit of g under iteration
of 	ψ (given by (22)) eventually reaches the fixed point 1, a, or the cycle ab−1a$a−1b,
respectively.
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[2] Bielefeld, B., Fisher, Y. & Hubbard, J., The classification of critically preperiodic
polynomials as dynamical systems. J. Amer. Math. Soc., 5 (1992), 721–762.

[3] Brezin, E., Byrne, R., Levy, J., Pilgrim, K. & Plummer, K., A census of rational
maps. Conform. Geom. Dyn., 4 (2000), 35–74.

[4] Douady, A. & Hubbard, J. H., A proof of Thurston’s topological characterization of
rational functions. Acta Math., 171 (1993), 263–297.

[5] Grigorchuk, R. I., Degrees of growth of p-groups and torsion-free groups. Mat. Sb.,
126(168) (1985), 194–214, 286.

[6] Kameyama, A., The Thurston equivalence for postcritically finite branched coverings.
Osaka J. Math., 38 (2001), 565–610.

[7] Milnor, J., Dynamics in One Complex Variable. Vieweg, Braunschweig, 1999.
[8] Nekrashevych, V., Self-Similar Groups. Mathematical Surveys and Monographs, 117.

Amer. Math. Soc., Providence, RI, 2005.
[9] Pilgrim, K.M., An algebraic formulation of Thurston’s combinatorial equivalence. Proc.

Amer. Math. Soc., 131 (2003), 3527–3534.
[10] Royden, H. L., Automorphisms and isometries of Teichmüller space, in Proceedings of

the Romanian–Finnish Seminar on Teichmüller Spaces and Quasiconformal Mappings
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