1,350 research outputs found

    Effects of genetic loci associated with central obesity on adipocyte lipolysis

    Get PDF
    Objectives: Numerous genetic loci have been associated with measures of central fat accumulation, such as waist-to-hip ratio adjusted for body mass index (WHRadjBMI). However the mechanisms by which genetic variations influence obesity remain largely elusive. Lipolysis is a key process for regulation of lipid storage in adipocytes, thus is implicated in obesity and its metabolic complications. Here, genetic variants at 36 WHRadjBMI-associated loci were examined for their influence on abdominal subcutaneous adipocyte lipolysis. Subjects and Methods: Fasting subcutaneous adipose tissue biopsies were collected from 789 volunteers (587 women and 202 men, body mass index (BMI) range 17.7–62.3 kg/m2). We quantified subcutaneous adipocyte lipolysis, both spontaneous and stimulated by the catecholamine isoprenaline or a cyclic AMP analogue. DNA was extracted from peripheral blood mononuclear cells and genotyping of SNPs associated with WHRadjBMI conducted. The effects on adipocyte lipolysis measures were assessed for SNPs individually and combined in a SNP score. Results: The WHRadjBMI-associated loci CMIP, PLXND1, VEGFA and ZNRF3-KREMEN1 demonstrated nominal associations with spontaneous and/or stimulated lipolysis. Candidate genes in these loci have been reported to influence NFκB-signaling, fat cell size and Wnt signalling, all of which may influence lipolysis. Significance: This report provides evidence for specific WHRadjBMI-associated loci as candidates to modulate adipocyte lipolysis. Additionally, our data suggests that genetically increased central fat accumulation is unlikely to be a major cause of altered lipolysis in abdominal adipocytes

    Particle Dynamics in the Rising Plume at Piccard Hydrothermal Field, Mid-Cayman Rise

    Get PDF
    Processes active in rising hydrothermal plumes, such as precipitation, particle aggregation, and biological growth, affect particle size distributions and can exert important influences on the biogeochemical impact of submarine venting of iron to the oceans and their sediments. However, observations to date of particle size distribution within these systems are both limited and conflicting. In a novel buoyant hydrothermal plume study at the recently discovered high-temperature (398°C) Piccard Hydrothermal Field, Mid-Cayman Rise, we report optical measurements of particle size distributions (PSDs). We describe the plume PSD in terms of a simple, power-law model commonly used in studies of upper and coastal ocean particle dynamics. Observed PSD slopes, derived from spectral beam attenuation and laser diffraction measurements, are among the highest found to date anywhere in the ocean and ranged from 2.9 to 8.5. Beam attenuation at 650 nm ranged from near zero to a rarely observed maximum of 192 m-1 at 3.5 m above the vent. We did not find large (\u3e100 µm) particles that would settle rapidly to the sediments. Instead, beam attenuation was well-correlated to total iron, suggesting the first-order importance of particle dilution, rather than precipitation or dissolution, in the rising plume at Piccard. Our observations at Piccard caution against the assumption of rapid deposition of hydrothermal, particulate metal fluxes, and illustrate the need for more particle size and composition measurements across a broader range of sites, globally

    Mineral phase analysis of deep-sea hydrothermal particulates by a Raman spectroscopy expert algorithm : toward autonomous in situ experimentation and exploration

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q05T05, doi:10.1029/2008GC002314.This paper demonstrates that a Raman spectroscopy, point-counting technique can be used for phase analysis of minerals commonly found in deep-sea hydrothermal plumes, even for minerals with similar chemical compositions. It also presents our robust autonomous identification algorithm and spectral database, both of which were developed specifically for deep-sea hydrothermal studies. The Raman spectroscopy expert algorithm was developed and tested against multicomponent mixtures of minerals relevant to the deep-sea hydrothermal environment. It is intended for autonomous classification where many spectra must be examined with little or no human involvement to increase analytic precision, accuracy, and data volume or to enable in situ measurements and experimentation.Support for J.A.B. was provided through a RIDGE 2000 Postdoctoral Fellowship (NSF OCE-0550331)

    Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 10 (2015): e0119284, doi:10.1371/journal.pone.0119284 .Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit) using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II) concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests that this organism is likely locally restricted to iron-rich marine environments but may exhibit wide-scale geographic distribution, further underscoring the importance of Zetaproteobacteria in global iron cycling.This work was supported by grants from the National Science Foundation [grants OCE-0926805 (DE and JAB), OCE-1155754 (DE), and OCE-1131109 (GWL)] and the National Aeronautics and Space Administration [NNX12AG20G (GWL and DE)]

    Stable gene replacement in barley by targeted double-strand break induction

    Get PDF
    Gene targeting is becoming an important tool for precision genome engineering in plants. During gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. We have analysed gene targeting in barley (Hordeum vulgare) using a model system based on double-strand break (DSB) induction by the meganuclease I-SceI and a transgenic, artificial target locus. In the plants we obtained, the donor construct was inserted at the target locus by homology-directed DNA integration in at least two transformants obtained in a single experiment and was stably inherited as a single Mendelian trait. Both events were produced by one-sided integration. Our data suggest that gene replacement can be achieved in barley with a frequency suitable for routine application. The use of a codon-optimized nuclease and co-transfer of the nuclease gene together with the donor construct are probably the components important for efficient gene targeting. Such an approach, employing the recently developed synthetic nucleases/nickases that allow DSB induction at almost any sequence of a genome of interest, sets the stage for precision genome engineering as a routine tool even for important crops such as barley

    Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 6 (2015): 8933, doi:10.1038/ncomms9933.Microbial activity is one of the most important processes to mediate the flux of organic carbon from the ocean surface to the seafloor. However, little is known about the microorganisms that underpin this key step of the global carbon cycle in the deep oceans. Here we present genomic and transcriptomic evidence that five ubiquitous archaeal groups actively use proteins, carbohydrates, fatty acids and lipids as sources of carbon and energy at depths ranging from 800 to 4,950 m in hydrothermal vent plumes and pelagic background seawater across three different ocean basins. Genome-enabled metabolic reconstructions and gene expression patterns show that these marine archaea are motile heterotrophs with extensive mechanisms for scavenging organic matter. Our results shed light on the ecological and physiological properties of ubiquitous marine archaea and highlight their versatile metabolic strategies in deep oceans that might play a critical role in global carbon cycling.his project is funded in part by the Gordon and Betty Moore Foundation Grant GBMF2609, National Science Foundation Grants OCE1038006 (G.J.D.) and OCE-1038055 (J.A.B), National Natural Science Foundation of China (grant no. 41506163), Natural Science Foundation of Guangdong Province (grant no. 2014A030310056), Shenzhen City (grant no. JCY20140828163633985 and KQCX2015032416053646) and SZU (grant no. 000066) (M.L.

    Affective Systems Induce Formal Thought Disorder in Early-Stage Psychosis

    Get PDF
    Although formal thought disorder (FTD) has been described since early conceptualizations of psychosis, its underlying mechanisms are unclear. Evidence suggests FTD may be influenced by affective and cognitive systems; however, few have examined these relationships—with none focusing on early-stage psychosis (EP). In this study, positive FTD and speech production were measured in sex- and race-matched EP (n = 19) and healthy control (n = 19) groups by assessing “reactivity”—a change in experimental compared with baseline conditions—across baseline, affective, and cognitive conditions. Relationships with functioning were also examined within each group. Three key findings emerged: (a) the EP group displayed large differences in positive FTD and speech production, (b) those with EP exhibited affective reactivity for positive FTD, and (c) positive FTD and affective reactivity were linked with poor real-world functioning in EP and these relationships did not considerably change when controlling for positive symptom (e.g., delusions, hallucinations) severity. Our findings provide preliminary evidence that affective, but not cognitive, systems play a critical role in positive FTD. Affective reactivity, in particular, may aid in predicting those with EP who go on to develop serious social impairments. Future work should focus on whether affective systems differentially influence those at separate points on the psychosis-spectrum in an effort to establish evidence-based treatments for FTD

    Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Communications 5 (2014): 3192, doi:10.1038/ncomms4192.Deep-sea hydrothermal vents are a significant source of oceanic iron. Although hydrothermal iron rapidly precipitates as inorganic minerals upon mixing with seawater, it can be stabilized by organic matter and dispersed more widely than previously recognized. The nature and source of this organic matter is unknown. Here we show that microbial genes involved in cellular iron uptake are highly expressed in the Guaymas Basin deep-sea hydrothermal plume. The nature of these microbial iron transporters, taken together with the low concentration of dissolved iron and abundance of particulate iron in the plume, indicates that iron minerals are the target for this microbial scavenging and uptake. Our findings indicate that cellular iron uptake is a major process in plume microbial communities and suggest new mechanisms for generating Fe-C complexes. This “microbial iron pump” could represent an important mode of converting hydrothermal iron into bioavailable forms that can be dispersed through the oceans.This project is funded by the Gordon and Betty Moore Foundation through grant GBMF 2609 to GJD/JAB/BMT and by the National Science Foundation through grants OCE 1029242 to GJD, and R2K grant OCE1038055 to JAB/BMT. We thank the University of Michigan Rackham Graduate School Faculty Research Fellowship Program for their support.2014-08-0
    • …
    corecore