
Title 1 

Microbial iron uptake as a mechanism for dispersing iron from deep-sea 2 

hydrothermal vents 3 

 4 

Meng Li1, Brandy M. Toner4, Brett J. Baker1, John A. Breier5, Cody S. Sheik1 and 5 

Gregory J. Dick1,2,3* 6 

 7 

1Department of Earth and Environmental Sciences, 2Department of Ecology and 8 

Evolutionary Biology, 3Center of Computational Medicine and Bioinformatics, 9 

University of Michigan, Ann Arbor, MI 48109 10 

4Department of Soil, Water, and Climate, University of Minnesota-Twin Cities, St. 11 

Paul, MN 55108 12 

5Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 13 

 14 

*Correspondence: GJ Dick (gdick@umich.edu)  15 

 16 

Department of Earth and Environmental Sciences, The University of Michigan, 2534 17 

CC Little Building, 1100 North University Avenue, Ann Arbor MI, 48109-1005, USA.  18 

 19 
  20 

 1 

mailto:gdick@umich.edu


Abstract 1 

Deep-sea hydrothermal vents are a significant source of oceanic iron. Although 2 

hydrothermal iron rapidly precipitates as inorganic minerals upon mixing with 3 

seawater, it can be stabilized by organic matter and dispersed more widely than 4 

previously recognized. The nature and source of this organic matter is unknown.  5 

Here we show that microbial genes involved in cellular iron uptake are highly 6 

expressed in the Guaymas Basin deep-sea hydrothermal plume. The nature of 7 

these microbial iron transporters, taken together with the low concentration of 8 

dissolved iron and abundance of particulate iron in the plume, indicates that 9 

iron minerals are the target for this microbial scavenging and uptake. Our 10 

findings indicate that cellular iron uptake is a major process in plume microbial 11 

communities and suggest new mechanisms for generating Fe-C complexes. This 12 

“microbial iron pump” could represent an important mode of converting 13 

hydrothermal iron into bioavailable forms that can be dispersed through the 14 

oceans. 15 

 16 

Introduction 17 

Iron (Fe) is the fourth most abundant element in the Earth’s crust but it is exceedingly 18 

rare in the oceans1. Fe-enrichment experiments show that Fe supply stimulates 19 

phytoplankton growth and hence the biological carbon pump, which sequesters 20 

carbon to the deep ocean2. Because it is such a limiting nutrient, marine 21 

microorganisms employ multiple strategies for obtaining Fe in various forms 22 

including dissolved Fe, particulate Fe (i.e. minerals), and Fe tightly bound to organic 23 

complexes like siderophores, hemophores, and heme3. Cells transport these Fe-24 

organic complexes through specific membrane receptors, such as TonB-dependent 25 
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transporters and ATP binding cassette (ABC) transporters, for subsequent biological 1 

utilization or storage4. However, an excess of Fe is toxic because of its ability to form 2 

reactive oxygen species4,5. Therefore, microbial Fe uptake is tightly controlled to 3 

maintain desirable intracellular Fe concentrations, often by the enzyme ferric uptake 4 

regulator (Fur)4,5. Fe sequestered by bacteria in this way is responsible for a large 5 

portion of Fe acquisition by marine phytoplankton in surface oceans6.  6 

Mid-ocean ridge axial hydrothermal venting contributes an annual flux of 7 

1000-10,000 Gg of dissolved Fe to the oceans7. It is commonly assumed that most of 8 

this Fe is biologically inaccessible due to the rapid chemical precipitation of Fe 9 

sulfide or oxide minerals8. However, recent evidence suggests that organic 10 

compounds bind and stabilize Fe in hydrothermal plumes, potentially altering the fate 11 

of Fe derived from hydrothermal vents9-14. Indeed, hydrothermal Fe may be 12 

transported thousands of kilometers from the source and represent a major source of 13 

Fe to deep ocean basins13,15,16. The nature and source of the organic ligands of Fe in 14 

plumes are unknown, but previous studies highlight the potential importance of 15 

microbial processes9-11.  16 

To investigate the mechanisms by which microorganisms influence cycling of 17 

hydrothermal Fe, we analyzed whole community gene expression 18 

(metatranscriptomics) together with Fe speciation (thermodynamic modeling and 19 

spectromicroscopy) of deep-sea hydrothermal plume (~1950 m) and background 20 

seawater (above the plume, ~1600 m) in the Guaymas Basin (GB), Gulf of California.  21 

We propose that the microbial uptake of iron from hydrothermal plume minerals 22 

represents a “microbial iron pump” in which inorganic iron is converted into more 23 

bioavailable and mobile forms that can be dispersed throughout the oceans.   24 

 25 
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Results 1 

Microbial Fe uptake genes in plume metatranscriptomes. Shotgun sequencing of 2 

community RNA with the Illumina HiSeq-2000 platform produced 206 and 245 3 

million short read transcript sequences from plume and background samples, 4 

respectively (Supplementary Table 1). We used a database of genes for cellular Fe 5 

uptake and utilization processes17,18 to identify 28,338 transcripts of genes encoding 6 

various Fe acquisition pathways. Transcripts of Fe-related genes were more abundant 7 

in plume than background, and similar results were observed in data obtained from 8 

454 sequencing technology (Supplementary Fig. 1). The enrichment of transcripts of 9 

Fe-related genes in the plume suggest that Fe acquisition is crucial for supporting the 10 

enhanced microbial growth that occurs via chemosynthesis in deep-sea hydrothermal 11 

plumes19. To facilitate further analysis of these Fe-related genes, metatranscriptomic 12 

reads were assembled de novo20, yielding 154 different Fe uptake genes in the plume. 13 

Several of these Fe-related genes were among the most abundantly represented genes 14 

in the entire plume metatranscriptome, including genes encoding TonB-dependent 15 

receptors and ABC-type transporters (Fig. 1). Of the total Fe-related transcripts 16 

identified in the plume, nearly 77% are from just five categories, including 17 

siderophore synthesis and uptake, Fe(III) uptake, siderophore regulation, and 18 

unspecified Fe transport (Fig. 2). Genes for heme uptake, Fe(II) uptake, Fe storage 19 

and other biological functions were present but less abundant (Fig. 2).  20 

Fe-related genes were further analyzed for their taxonomic affiliation using 21 

BLAST searches against the non-redundant NCBI protein database. 22 

Gammaproteobacteria, primarily Alteromondaceae, Methylococcaceae and 23 

uncultured SUP05, dominated Fe-related genes in the metatranscriptome, accounting 24 

for 26% to 87% of transcripts from the top five pathways (Fig. 3). The SAR324 group 25 
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of Deltaproteobacteria also has several highly expressed genes encoding putative Fe 1 

ABC transporters, which dominate the unspecified Fe transport pathway (Fig. 3). 2 

Methylococcaceae, uncultured SUP05, and SAR324 were identified previously as the 3 

major community members in the GB plume21. Despite the low abundance of 4 

Alteromondaceae in the Guaymas Basin (averaging 2.8 times coverage for 5 

metagenome and 1.01-4.04% of the total Guaymas Basin community at depths of 6 

1300-1900 m)20, their Fe uptake genes accounted for 12% to 45% of transcripts for 7 

the five dominant Fe uptake pathways (Fig. 3). Further analysis of the main 8 

Alteromondaceae group in the GB metatranscriptome (designated “GBAlt”) indicated 9 

that it was closely related to the ubiquitous particle-associated marine heterotroph 10 

Alteromonas macleodii22 (Supplementary Fig. 2, 3). Interestingly, GBAlt has highly 11 

transcribed genes encoding TonB-dependent and ABC transporters, including those 12 

predicted to be involved in transport of Fe-siderophores or Fe-heme/hemophores (Fig. 13 

1, Supplementary Fig. 4). Taken together, these results show that many of the 14 

dominant bacterial groups of the GB hydrothermal plume participate in cellular Fe 15 

uptake, including methanotrophs (Methylococcaceae), chemolithoautotrophs (SUP05 16 

and SAR324), and heterotrophs (Alteromondaceae). 17 

More than 70% of the Fe-related transcripts we identified are involved in 18 

pathways for siderophore uptake, regulation and biosynthesis (Fig. 2), indicating that 19 

siderophores are a key mechanism for microbial Fe uptake in the GB hydrothermal 20 

plume community. Siderophores are low molecular weight organic ligands that bind 21 

Fe(III) with high affinity and specificity. Two predominant structural classes of 22 

marine siderophores have been identified: (a) amphiphilic siderophores with fatty acid 23 

appendages of various lengths, and (b) siderophores with α-hydroxy carboxylic acid 24 

moieties. The majority of siderophores identified to date are from 25 
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Gammaproteobacteria and Alphaproteobacteria23. Our results are consistent with 1 

Gammaproteobacteria being the dominant producers of siderophores in the GB 2 

plume, accounting for 66% of Fe transcripts putatively involved in siderophores 3 

synthesis (Fig. 3). Determining the molecular structure of siderophores in complex 4 

samples such as seawater is notoriously difficult23-25. The genes involved in 5 

siderophore biosynthesis, regulation, and uptake identified here may provide unique 6 

insights into the nature, source, and factors controlling the abundance of siderophores 7 

in plumes.  However, accurate prediction of siderophore structures from genetic data 8 

is not currently feasible due to the dearth of biochemical and physiological data on the 9 

microbial groups described here, which are mostly uncultured. Siderophore 10 

production is widespread in Alteromonas species, and Alteromonas macleodii takes 11 

up siderophores but does not produce siderophores26,27, suggesting that it may utilize 12 

exogenous siderophores or other natural organic ligands.   13 

 14 

Physicochemical measurement and thermodynamic modeling. Our 15 

metatranscriptomic data indicate that plume microorganisms obtain Fe primarily in 16 

the form of Fe(III) rather than Fe(II). This finding is consistent with previous results 17 

from geochemical modeling, which show that Fe(III) rather than Fe(II) binding 18 

ligands are more efficient at stabilizing hydrothermal iron for transport away from the 19 

near vent field11. Previous work has also shown that total Fe concentrations in 20 

endmember GB hydrothermal fluids range from 1.7×10-5 to 18×10-5 mol/kg28, orders 21 

of magnitude higher than in background seawater. Given this high abundance of Fe, 22 

the prevalence of Fe scavenging mechanisms is somewhat surprising. However, upon 23 

mixing of hydrothermal fluids with seawater, much of the soluble, readily 24 

bioavailable Fe(II) precipitates as oxides and sulfides that are less bioavailable. To 25 
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assess the speciation and concentration of Fe in the GB plume, we used 1 

thermodynamic modeling, X-ray absorption spectroscopy (XAS), scanning 2 

transmission X-ray microscopy (STXM) and elemental analysis by inductively 3 

coupled plasma optical emission spectroscopy. Modeling conducted in the absence of 4 

organic ligands predicts that aqueous phase Fe(II) and Fe(III) species are at low 5 

concentration (ca. < 0.1 nmol kg-1 seawater).  Measured concentrations of particulate 6 

Fe ranged from 4.15-15.78 nmol kg-1 seawater (Supplementary Table 2). Elemental 7 

analyses also confirm the significant fraction of hydrothermal material in these 8 

samples, which exhibit Al/(Al+Fe+Mn) ratios of 0.4 to below our detection limit for 9 

Al29. Modeling results predict particulate Fe species including pyrite, magnetite, and 10 

Fe(III)-hydroxide (Fig. 4a, Supplementary Fig. 5). Consistent with model predictions, 11 

Fe(III)-bearing (oxyhydr)oxide minerals such as maghemite (γ-Fe(III)2O3), 12 

lepidocrocite (γ-Fe(III)OOH), and magnetite (Fe(II)Fe(III)2O4) were observed by Fe 13 

1s X-ray absorption near edge structure (XANES) spectroscopy (Fig. 4b, 4c).  STXM 14 

revealed that plume particles (4-10 µm diameter range) are composed of aggregated 15 

materials that are rich in Fe as well as carbon, nitrogen, and manganese 16 

(Supplementary Fig. 6, 7). The C 1s XANES spectra are consistent with primarily 17 

aliphatic organic molecules having C=C (285.2 eV), -CH (287.5 eV), and O-C=O 18 

(288.7 eV) functional moieties (Supplementary Fig. 8), distinct from the protein and 19 

lipid-rich particulate organic carbon (POC) observed in plumes at the East Pacific 20 

Rise9,12. 21 

 22 

Discussion 23 

Given the prevalence of siderophore-mediated Fe(III) uptake in the GB plume 24 

microbial community and that plume Fe is expected to be predominant in the form of 25 
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particulate minerals, we propose a model for microbial acquisition of Fe through 1 

microbe-mineral interactions in hydrothermal plumes (Fig. 5). Under low dissolved 2 

Fe conditions and to support the growth that occurs in the presence of hydrothermal 3 

energy sources, microbes produce a variety of siderophores that dissolve solid phase 4 

Fe minerals and facilitate cellular uptake30. Siderophore production is regulated by 5 

ferric uptake regulator to maintain Fe homeostasis3. Fe(III) is reduced to Fe(II) within 6 

the cell for storage or use in biological functions in which it is complexed to a variety 7 

of intracellular organic compounds4. Subsequent cell death may release this 8 

organically complexed Fe into the dissolved or particulate organic carbon pool. 9 

Alternatively, because deep-sea microbial communities are thought to be relatively 10 

stable19, Fe that remains within cells would be widely dispersed by deep ocean 11 

currents. In either case, these processes represent a “microbial Fe pump” that 12 

mobilizes Fe bound in minerals and sequesters it within organic material where it is 13 

protected from oxidation and scavenging. This is a distinct but not mutually exclusive 14 

mechanism for plume Fe-carbon interactions compared to others that have been put 15 

forward. For example, the microbial Fe pump could generate Fe bound to POC or 16 

dissolved organic carbon (DOC) that has been observed previously9-11. An important 17 

distinction, however, is that siderophore-mediated mobilization of Fe(III) from 18 

minerals greatly expands the region in which organic complexation could take place 19 

because previous mechanisms require complexation prior to or immediately after 20 

Fe(II) oxidation10, and are thus tied to Fe(II) oxidation kinetics. In contrast, a 21 

siderophore-mediated mechanism could operate long after precipitation of Fe 22 

minerals as plumes disperse far from hydrothermal fields. Furthermore, as 23 

siderophores produced in deep-sea hydrothermal plumes are not subjected to photo-24 

degradation, a major break-down mechanism of siderophores in the photic zone31, 25 
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they may disperse away from the plume and contribute to the pool of strong Fe-1 

binding ligands (L1-type) found in the deep oceans11,32,33, thus enhancing the effects 2 

of “microbial Fe pump” in the deep oceans.   3 

The molecular and geochemical evidence presented here points to microbial 4 

scavenging of Fe from freshly precipitated minerals in hydrothermal plumes as a 5 

mechanism by which inorganic Fe is transferred to the organic phase. This process 6 

should be enhanced in deep-sea hydrothermal plumes where microbes are stimulated 7 

by energy-rich electron donors (sulfur34,35, methane36, ammonia37, and H2
34) that fuel 8 

microbial growth via autotrophy and subsequent heterotrophy (Fig. 5). The few data 9 

points that are available suggest that the interplay between Fe, organic carbon, and 10 

microorganisms is distinct at different hydrothermal systems9-11, suggesting that the 11 

fate of hydrothermal Fe in the deep sea is governed by dynamic biogeochemical 12 

factors. Important details remain unresolved; we are currently unable to quantify the 13 

strength of this microbial Fe pump or determine the nature of the siderophores or 14 

other ligands involved. Due to the uncultivated nature of the microbial populations 15 

discussed here, biochemical knowledge of the proteins encoded by the putative Fe-16 

related genes is limited. However, recent evidence of extensive organically-17 

complexed Fe in dispersing hydrothermal plumes13,14 highlights the need to explore 18 

these questions further. The ubiquitous and culturable nature of Alteromonas 19 

macleodii, one of the siderophore utilizers identified here, along with advances in 20 

analytical methods for probing Fe and carbon speciation in the environment, suggests 21 

that addressing such questions is within reach. 22 

     23 

Methods 24 
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Sample information. Seawater samples were collected on three cruises abroad R/V 1 

New Horizon in 2004 and 2005 from the Guaymas Basin hydrothermal plume and 2 

background as described previously34,38. Metadata and physical/chemical 3 

characteristics of each sample are presented in detail in recent publications21,34 and 4 

also listed in supplementary Table 1.  5 

 6 

Metatranscriptomics. Nucleic acids extraction and sequencing were done as 7 

described previously21,34,38. The Illumina metatranscriptomic datasets from plume and 8 

background samples were used for de novo assembly independently20. In brief, cDNA 9 

reads were first de-replicated by removing identical reads then quality trimmed with 10 

Sickle (score > 30). These de-replicated and trimmed cDNA reads were assembled by 11 

Velvet (1.2.01) and processed using the transcriptomic assembler Oases 0.2.0439. 12 

Abundance of transcripts was determined by mapping all cDNA reads to the 13 

assembled fragments using BWA with default settings40 and normalizing to the length 14 

of each gene. Assembled contigs were submitted to the DOE Joint Genome Institutes 15 

(JGI) Integrated Microbial Genomes website (http://img.jgi.doe.gov/cgi-16 

bin/w/main.cgi) for gene calling and annotation.  17 

 18 

Identification of Fe uptake transcripts. We searched all annotated genes on 19 

assembled GB mRNA transcripts against a published Fe uptake gene database (E 20 

value < 10-20)17,18. We then compared positive hits to the non-redundant NCBI protein 21 

database. Only those that had top hits to Fe uptake genes were considered to be 22 

involved in Fe uptake. These identified Fe uptake genes were divided into different 23 

pathways as described previously17. To estimate the relative abundance of transcripts 24 
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for each pathway of Fe uptake, we mapped all of the cDNA reads to each Fe uptake 1 

gene in the GB assembly as well as available databases17,18. 2 

 3 

GBAlt analysis. We searched all annotated genes on assembled GB mRNA 4 

transcripts using all of Alteromonas macleodii genes (E value < 10-20)22. We then 5 

compared positive hits to the non-redundant NCBI protein database. Only those that 6 

had top hits to A. macleodii genes were considered to be GBAlt. Gene similarities 7 

between GBAlt and two ecotypes (ATCC 27126 and AltDE) of Alteromonas 8 

bacteria22 were analyzed by a BLASTn analysis (bit score > 50). Function of TonB-9 

dependent transporters was predicted and classified based on the database and 10 

approach as described previously41, while classification of GBAlt ABC transporter 11 

function was analyzed based on the top hit in a BLASTx analysis.  12 

Phylogenetic relationship of GBAlt was analyzed based on the 16S rRNA sequence 13 

recovered by the EMIRGE program42 from GB transcriptomes and previous published 14 

clone sequences at the same research area38. 16S rRNA sequences were aligned in 15 

Greengenes43 and imported into ARB for phylogenetic analyses using maximum 16 

likelihood (RaxML)44. Phylogenetic trees of two housekeeping genes encoding the β 17 

subunits of DNA gyrase (gyrB) and RNA polymerase (rpoB) were also constructed by 18 

maximum likelihood to evaluate the phylogenetic relationship of GBAlt with other 19 

ecotypes of Alteromonas bacteria45. 20 

Phylogenetic relationships of 16S rRNA (Supplementary Fig. 3) and two 21 

housekeeping genes encoding the β  subunits of DNA gyrase (gyrB) and RNA 22 

polymerase (rpoB) clearly show that the major active species of the GB plume A. 23 

macleodii population (GBAlt) are more closely related to the “surface ecotype” rather 24 

than the “deep ecotype” of A. macleodii (Supplementary Fig. 3). Genome comparison 25 
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further indicates that GBAlt (2549 mRNAs, ~1.2 Mb) shares 95.1% average sequence 1 

identity with the surface ecotype (ATCC 27126), and 91.8% with the deep ecotype of 2 

A. macleodii (AltDE) (Supplementary Fig. 4). The higher sequence similarity between 3 

GBAlt and surface ecotype demonstrates that previously observed biogeographic 4 

distribution patterns of A. macleodii might be not suitable for the species present at 5 

deep-sea hydrothermal vents, including GBAlt and several isolates from hydrothermal 6 

vents (Supplementary Fig. 3). 7 

 8 

Thermodynamic modeling. Equilibrium thermodynamic reaction path modeling was 9 

used to predict Fe mineral precipitation, chemical concentrations, and activity 10 

coefficients resulting from the mixing of seawater with Guaymas Basin end member 11 

vent fluid (Supplementary Fig. 5). Our approach follows those of previous studies46,47. 12 

Our Guaymas plume model was described in detail in Anantharaman et al.34 and 13 

builds on the specific plume model implementation of Breier et al.12. The endmember 14 

chemical concentrations and implementation used in this model are the same as that 15 

for Anantharaman et al.34, with the exception of a subset of assumptions which were 16 

added to more accurately predict mineral formation following our approach in Breier 17 

et al.12. The following is a brief description of the aspects of this model pertinent to 18 

this study; interested readers are referred to Anantharaman et al.34 for more details. 19 

The Guaymas plume reaction path is modeled through a mixing process that ends at a 20 

vent fluid to seawater dilution of 1 part in 10,000, representing the dilution achieved 21 

at the non-buoyant plume heights sampled in this study. Vent fluid composition was 22 

based on measurements made in 1982 and 2000 28,48. In situ pH was calculated from 23 

measurements of pH at 25 ° C using an equilibrium reaction path model that increased 24 
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the temperature of the measured fluid to the original vent fluid temperature. 1 

Background seawater dissolved O2 concentration was based on previous 2 

measurements reported for Guaymas basin hydrothermal plumes49. Note, the available 3 

data predates this study; actual vent chemistry during this study may have differed.  4 

Reaction path modeling was performed with REACT, part of the Geochemist’s 5 

Workbench package50. Conductive cooling was neglected and mixture temperatures 6 

were a strict function of conservative end-member mixing. Precipitated minerals were 7 

allowed to dissolve and their constituents to re-precipitate based on thermodynamic 8 

equilibrium constraints. Thermodynamic data was predicted by SUPCRT9551 for the 9 

temperature range of 1-425° C (specifically 1, 25, 60, 100, 225, 290, 350, and 425° C) 10 

and a pressure of 500 bar, a pressure and temperature range that encompasses all 11 

known deep sea vents. SUPCRT95 uses previously published thermodynamic data for 12 

minerals, gases, and aqueous species52-56. Thermodynamic data for pyrolusite, 13 

bixbyite, hausmannite, marcasite, and Fe(OH)3 were added for our study57,58. The B-14 

dot activity model was used59,60. Temperature dependent activity coefficients were 15 

used for aqueous CO2 and water in an NaCl solution50,61,62. A general limitation of 16 

REACT is that it does not predict the thermodynamic behavior of solid solutions. 17 

Thus minerals such as sphalerite, pyrrhotite, chalcopyrite, and isocubanite are treated 18 

as separate phases with ideal stoichiometries. This may influence the predicted plume 19 

mineral assemblage.  20 

In Anantharaman et al.34, we suppressed all aqueous phase redox couples in order to 21 

estimate upper limit constraints on potential chemosynthetic metabolic energy. In this 22 

case, we use these same assumptions but because of our specific interest in Fe 23 

speciation in this study we have added additional assumptions related to mineral 24 

formation following Breier et al.12 The precipitation of hematite was suppressed to 25 
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allow Fe hydroxide to precipitate on the basis that the latter is a closer approximation 1 

than the former to the more common amorphous Fe oxyhydroxides, which precipitate 2 

preferentially due to kinetic effects.  The precipitation of Mg bearing minerals, and 3 

silicates, with the exception of amorphous silica, were also suppressed for simplicity.  4 

Some in this group have been found as minor plume constituents, others such as 5 

quartz appear kinetically inhibited; but in any case, the suppression of this group does 6 

not influence the precipitation of the minerals of interest in this study. Precipitated 7 

minerals were allowed to dissolve and their constituents to re-precipitate based on 8 

thermodynamic equilibrium constraints.  9 

 10 

Bulk Elemental Analysis. Particulate filter samples were completely digested in 30 11 

mL acid cleaned perfluoroalkoxy vials (Savillex) using the following procedure based 12 

on Bowie et al.63. The 0.2 μm, 142 mm diameter, polyethersulfone membrane filters 13 

(SUPOR, Pall Corporation) were split into 1/8 sections. Each filter split was added to 14 

a digestion vials with 2 ml concentrated nitric acid. The vials were capped and heated 15 

at 110° C for 4 hrs. After cooldown 0.5 mL of concentrated hydrofluoric acid was 16 

added to each vial. The vials were capped and heated at 110° C for 4 hrs. The vials 17 

were then uncapped and heated at 120° C to dryness. An additional 100 μL of 18 

concentrated nitric acid was added and similarly taken to dryness to facilitate 19 

evaporation of the hydrofluoric acid. After cool down, the digested sample was taken 20 

back into solution by adding 3 mL of a 3% nitric acid matrix. The vials were capped 21 

and heated for 1 hour at 60° C. This process resulted in the complete digestion of 22 

visible particles and in most cases the filter, in the few cases where residual filter 23 

material (< 1% of the whole filter) remained it was removed by filtration of the digest 24 

solution. All acids were trace metal grade (Optima, Fisher Scientific). Vials were 25 
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heated in a temperature-controlled hot plate (Qblock, Questron Technologies). 1 

Aliquots of sample digest, at a 1:10 dilution, were analyzed for Fe, Mn, Fe, Al, Ti, P, 2 

Zn, Ni, Cu and U by inductively coupled plasma optical emission spectrometry on a 3 

Varian 730-ES axial spectrometer by Activation Laboratories. External standards 4 

were used for instrument calibration. Digestion and analysis were both monitored by 5 

processing portions of the basalt geostandard BHVO-164 with these samples 6 

(Supplementary Table 2). 7 

 8 
STXM and C XANES Spectroscopy. Scanning transmission X-ray microscopy 9 

(STXM) and C 1s X-ray absorption near edge structure (XANES) spectroscopy were 10 

performed at the Advanced Light Source, Lawrence Berkeley National Laboratory, 11 

Berkeley, CA, USA, on beamline 5.3.2.265.  Guaymas Basin plume particles were re-12 

suspended from the original PES filter by gentle shaking in 0.5 mL of purified water.  13 

From this suspension, ~ 1 µL was deposited on a silicon nitride membrane (Silson 14 

Ltd.) and air-dried.  This preparation resulted in dispersed particles with no sea salt 15 

precipitates.  Optical density (OD) images were made from X-ray images recorded at 16 

energies just below and at the C 1s (280, 305 eV), N 1s (395, 401.5 eV), Mn 2p (635, 17 

643 eV), and Fe 2p (700, 709.5 eV) absorption edges. The Fe 2p 709.5 eV image will 18 

preferentially display Fe(III) if present.  Fe 2p images were also collected at 707.6 eV 19 

to test the sample for Fe(II).  The patterns observed for 709.5 eV and 707.6 eV images 20 

revealed the same pattern of Fe in the particles with differing optical densities.  21 

Therefore, only the elemental maps derived from the 709.5 eV images are displayed 22 

in Supplementary Fig.6. Carbon 1s XANES spectra from regions of interest were 23 

obtained from image sequences (called stacks) collected at energies spanning the 24 

absorption edge (280-340 eV for C).   Theoretical spatial and spectral resolutions 25 

were 20 nm and ± 0.1 eV, respectively.  All measurements were performed at ambient 26 
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temperature and < 1 atm He.  Calibration at the C 1s edge was accomplished with the 1 

3s (292.74 eV) and 3p (294.96 eV) Rydberg transitions of gaseous CO2.  All STXM 2 

data processing was carried out with the IDL aXis2000 software package 3 

(http://unicorn.mcmaster.ca/aXis2000.html).  All XANES data processing was done 4 

in program Athena. 5 

 6 

X-ray Microprobe and Fe 1s XANES Spectroscopy. A small (~ 1.5 cm2) portion of 7 

the original PES filter, obtained using a ceramic scalpel, was mounted on an 8 

aluminum sample holder.  The remaining sample was stored frozen.  Data collection 9 

at the ALS beamline 10.3.266 had the following task flow for these filter-bound plume 10 

particles:  X-ray fluorescence (XRF) mapping at multiple energies to determine the 11 

spatial distribution of elements in the particles within a region of interest; and Fe 1s 12 

XANES spectroscopy measurements at specific locations (i.e. particles or particle 13 

aggregates) within the region of interest. 14 

The distribution of Fe, Mn, Ca, and other elements was measured in an area 0.995 × 15 

1.865 mm2 by microprobe XRF using a 7-element Ge solid-state fluorescence 16 

detector (Canberra) with a pixel size of 5 × 5 µm2.   XRF mapping included: (1) an 17 

“As map” with incident energy set to PbL3-50, or 12,985 eV, that provided Fe, Ni, Cu, 18 

Zn, and As distributions; (2) a “Mn map” with incident energy set to FeK-50, or 7062 19 

eV, that provided Mn distribution without interference from Fe Kα fluorescence 20 

emission; and (3) a “V map” was generated by subtracting a VK-50, or 5415 eV map 21 

from a VK+100, or 5565 eV to distinguish V Kα from Ti Kβ fluorescence emission.  22 

Light elements, Si, S, Cl, K, and Ca, were obtained from the lowest energy map 23 

collected.  Individual XRF maps were deadtime corrected, aligned, and channels of 24 

interest were added to a single composite map using custom beamline software66.   25 
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The composite XRF map was used to locate particles for Fe 1s XANES spectroscopy.  1 

The monochromator energy calibration was set with the inflection point of a scan of 2 

Fe foil at 7110.75 eV. Iron XANES were conducted in “quick” mode using the 3 

fluorescence detector.  Individual scans of the monochromator required 30 s, and 4 

were repeated up to 60 times.  Data scans collected at the same sample location were 5 

examined for changes in line-shape and peak position, and no photon-induced sample 6 

damage was observed.  Spectra were deadtime corrected, energy calibrated, and 7 

averaged using custom beamline software66. The software program Athena was used 8 

to perform pre-edge subtraction and post-edge normalization67. Normalized spectra 9 

were subjected to linear combination fitting (LCF) with reference spectra using 10 

custom beamline software66 as described in previous study12.  The Fe reference 11 

spectra database used has 94 entries68-70. 12 

  13 
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Figure Legends 1 
 2 

Figure 1. Rank abundance of gene transcripts. The grey circles are genes of whole 3 

GB plume community and yellow triangles are genes for Fe uptake in the plume 4 

metatranscriptomic de novo assembly. The relative abundance of gene transcripts was 5 

normalized to the length of gene fragment and the total number of all transcripts. 6 

Representative genes involving in Fe transport are indicated.  7 

 8 

Figure 2. Pathways of microbial Fe transport. The bar at the top shows the 9 

proportions of the GB hydrothermal plume transcripts assigned to each pathway, and 10 

the schematic below shows the corresponding pathways.  11 

 12 

Figure 3. Relative abundance of Fe transcripts. Each bar indicates the proportion of 13 

transcripts assigned to different microbial groups for the five dominant pathways of 14 

Fe uptake, respectively. 15 

 16 

Figure 4. Fe species obtained from modeling and Fe XANES spectroscopy. (a) 17 

Abundance of Fe species in mineral and aqueous phases in the GB plume (2 –10 °C) 18 

predicted by the thermodynamic modeling. The temperature of the plume samples 19 

collected in this study were 2.53 – 2.97 °C (indicated by the green bar). (b) Fe 20 

XANES spectra of Fe-bearing minerals in plume particles and (c) their observed 21 

distribution quantified by linear combination fitting of the spectromicroscopic data.  22 

In figure 4b, spot 0 to spot 3 are the iron XANES spectra collected from sample 23 

locations indicated in Supplementary Figure 7 panel (a), and vertical lines at 7129.5 24 

eV, 7131 eV, and 7132 eV are to guide the eye; full spectra range is 7071.4 – 7367.6 25 

eV.  26 

 27 

Figure 5. Microbial Fe pump in deep-sea hydrothermal plumes. Uptake of Fe 28 

(primarily Fe(III)) is conducted by dominant chemosynthetic, methanotrophic, and 29 

 27 



heterotrophic populations.  Subsequent dispersal of Fe may occur as Fe-siderophore 1 

complexes or via whole cells or POC or DOC produced through cell lysis. 2 

 28 
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