356 research outputs found

    Scenarios about the long-time damage of silicon as material and detectors operating beyond LHC collider conditions

    Full text link
    For the new hadron collider LHC and some of its updates in luminosity and energy, as SLHC and VLHC, the silicon detectors could represent an important option, especially for the tracking system and calorimetry. The main goal of this paper is to analyse the expected long-time degradation in the bulk of the silicon as material and for silicon detectors, in continuous radiation field, in these hostile conditions. The behaviour of silicon in relation to various scenarios for upgrade in energy and luminosity is discussed in the frame a phenomenological model developed previously by the authors. Different silicon material parameters resulting from different technologies are considered to evaluate what materials are harder to radiation and consequently could minimise the degradation of device parameters in conditions of continuous long time operation.Comment: submitted to Physica Scripta Work in the frame of CERN RD-50 Collaboratio

    Learning interpretable continuous-time models of latent stochastic dynamical systems

    Get PDF
    We develop an approach to learn an interpretable semi-parametric model of a latent continuoustime stochastic dynamical system, assuming noisy high-dimensional outputs sampled at uneven times. The dynamics are described by a nonlinear stochastic differential equation (SDE) driven by a Wiener process, with a drift evolution function drawn from a Gaussian process (GP) conditioned on a set of learnt fixed points and corresponding local Jacobian matrices. This form yields a flexible nonparametric model of the dynamics, with a representation corresponding directly to the interpretable portraits routinely employed in the study of nonlinear dynamical systems. The learning algorithm combines inference of continuous latent paths underlying observed data with a sparse variational description of the dynamical process. We demonstrate our approach on simulated data from different nonlinear dynamical systems

    Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission

    Get PDF
    Rare earth ion doped materials are means to obtain cost-effective infrared light sources, with enough brilliance for applications such as gas sensing. Within a sulfide matrix, the simultaneous luminescence of both Pr3+ and Dy3+ in the Ga5Ge20Sb10S65 glass is reported. The use of these two rare earths is giving rise to a broad continuous luminescence in the 2.2–5.5 µm wavelength range, which could be used as a mid-infrared light source for gas-sensing applications. The demonstration of CO2 and CH4 detection using a fiber drawn from these materials is reported

    Report of the study group on a superconducting proton linac as a PS Injector

    Get PDF
    A proposal was made at the end of 1996 to use the large inventory of RF hardware available after the decommissioning of LEP-2 for the construction of a 2 GeV Superconducting Proton Linac (SPL) to inject directly into the PS [1.1]. The brightness of the beam in the PS at low energy would double, helping the injector complex to satisfy the requirements of the LHC and benefiting the planned proton physics programme. Additional users could also be accommodated thanks to the capability of the SPL to operate at a much larger duty factor than that required for high-energy physics. Consequently, a small study group has been set up to analyse the major technical aspects of the SPL design as well as the processes of injection and capture in the PS. This report summarises the work done so far, and provides some information about the other possible uses of the SPL beam. The feasibility of such a cascade of accelerators is confirmed, although an in-depth design study is still required before the realistic performance and detailed design of that facility can be announced

    The repeatability of cognitive performance: a meta-analysis

    Get PDF
    International audienceOne contribution of 15 to a theme issue 'Causes and consequences of individual differences in cognitive abilities'. Behavioural and cognitive processes play important roles in mediating an individual's interactions with its environment. Yet, while there is a vast literature on repeatable individual differences in behaviour, relatively little is known about the repeatability of cognitive performance. To further our understanding of the evolution of cogni-tion, we gathered 44 studies on individual performance of 25 species across six animal classes and used meta-analysis to assess whether cognitive performance is repea-table. We compared repeatability (R) in performance (1) on the same task presented at different times (temporal repeat-ability), and (2) on different tasks that measured the same putative cognitive ability (contextual repeatability). We also addressed whether R estimates were influenced by seven extrinsic factors (moderators): type of cognitive performance measurement, type of cognitive task, delay between tests, origin of the subjects, experimental context, taxonomic class and publication status. We found support for both temporal and contextual repeatability of cognitive performance, with mean R estimates ranging between 0.15 and 0.28. Repeatability estimates were mostly influenced by the type of cognitive performance measures and publication status. Our findings highlight the widespread occurrence of consistent inter-individual variation in cog-nition across a range of taxa which, like behaviour, may be associated with fitness outcomes. This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'

    Addition of Ag2O in Er3+doped oxyfluorophosphate glass to allow the drawing of optical fibers

    Get PDF
    Here, Ag2O containing glasses in the NaPO3–CaF2 glass network were prepared using standard melting process. The addition of Ag2O was found to increase the thermal stability of the glass due to the decrease in the Q2 units at the expense of Q1 units, to decrease the intensity of the upconversion under 980 nm pumping and to have a small impact on the nucleation and growth mechanism. Due to the thermal stability against crystallization of the glass prepared with 4 mol % of Ag2O, we demonstrate that fiber can be drawn from this glass. Despite the formation of Ag nanoparticles at the surface of the fiber although the drawing is a fast process, light can still be confined in the fiber. The fiber exhibits a large emission band centered at 1.5 μm under 980 nm pumping.Peer reviewe
    • …
    corecore