1,185 research outputs found

    Non-Abelian Chern-Simons-Higgs vortices with a quartic potential

    Get PDF
    We have constructed numerically non-Abelian vortices in an SU(2) Chern-Simons-Higgs theory with a quartic Higgs potential. We have analyzed these solutions in detail by means of improved numerical codes and found some unexpected features we did not find when a sixth-order Higgs potential was used. The generic non-Abelian solutions have been generated by using their corresponding Abelian counterparts as initial guess. Typically, the energy of the non-Abelian solutions is lower than that of the corresponding Abelian one (except in certain regions of the parameter space). Regarding the angular momentum, the Abelian solutions possess the maximal value, although there exist non-Abelian solutions which reach that maximal value too. In order to classify the solutions it is useful to consider the non-Abelian solutions with asymptotically vanishing AtA_t component of the gauge potential, which may be labelled by an integer number mm. For vortex number n=3n=3 and above, we have found uniqueness violation: two different non-Abelian solutions with all the global charges equal. Finally, we have investigated the limit of infinity Higgs self-coupling parameter and found a piecewise Regge-like relation between the energy and the angular momentum.Comment: 9 pages, 13 figure

    Measurement device design: Rain gauge

    Get PDF
    The need to size large hydraulic infrastructures, exploit extensive agricultural areas or simply arrange water assets for human consumption makes the evaluation of the available water resources essential. Water is a scarce resource that is poorly distributed both, spatially and temporally. Therefore, a set of hydrological networks that allow the evaluation of water quantity and quality is required. In order to achieve this, the first step is to retrieve reliable data on rainfall. To carry out a correct evaluation of water resources, both in the small and large scale, disposing hydrological networks that involve a certain number of measuring devices becomes critical. Despite the great amount of studies that have been developed on measuring devices such as rain gauges, there are still many errors that remain in the measurements and that have not been ruled out yet, thus affecting the accuracy of the measurements. In this sense, the design of a device that provides an accurate measurement of rainfall and also results affordable, could be the key to a product with great acceptance in the market. The aim of this work is to present the design of a measurement device that provides accurate data and can be used in multiple ways: as an ordinary rain gauge, as a rain gauge recorder, or even allowing to carry on both functions simultaneously. The methodology followed for its implementation has consisted in analyzing the techniques and procedures to be trailed at quantifying rainfall, conducting a market study and analyzing specifications to be in accordance to WMO (World Meteorological Organization) [2] [3] to then go through a conceptual design and finally complete the detailed design where materials are valued and simulation tests are performed in order to meet certain accuracy and economical requirements.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A numerical approach for liquefaction potential definition

    Get PDF
    Liquefaction phenomenon in saturated granular soil is not that frequent as amplification cases but can cause heavy damages on buildings and infrastructures whenever is occurs especially within superficial strata. In fact the lack of shear resistance of soil due to liquefaction affects mostly shallow foundations and road surfaces. Up now, several studies have been addressed to overpass the inadequacy of liquefaction safety factor by means of introducing the liquefaction potential. Nevertheless, the difficulty in (1) defining a scale of damage related to liquefaction potential values and (2) collecting field data from damages caused prevalently by liquefaction makes the punctual factor of safety still popular in engineering practice. In this paper a new approach to liquefaction potential estimation is proposed based on finite element dynamic analyses and on the concept of “significant volume” according to possible effects suffered by shallow foundations. One-dimensional simulation of liquefaction occurrence is performed by means of the Pastor-Zienkiewicz constitutive law. Hence the estimation of liquefaction potential is gained as well as the stress influence factor from Westergaard solution is calculated

    Estimulación vagal en el tratamiento de la epilepsia

    Get PDF
    The vagal nerve stimulation is a new technique for the treatment of drug resistant epilepsies. DEVELOPMENT: In 1997, it was approved in United States by the FDA to be used in adults with refractory focal epilepsies not candidates for epilepsy surgery. Its mechanism of action is unknown. The results in the controlled studies indicated a decrease of 30 50% in the seizure frequency in around 50% of the patients. Although more experience is needed to corroborate these results, it seems reasonable as a treatment for patients with difficult epilepsies, especially when the response to the antiepileptic drugs is poor or they are producing secondary effects, and the resection of the focus is not possible

    Voltage dip generator for testing wind turbines connected to electrical networks

    Get PDF
    This paper describes a new voltage dip generator that allows the shape of the time profile of the voltage generated to be configured. The use of this device as a tool to test the fault ride-through capability of wind turbines connected to the electricity grid can provide some remarkable benefits: First, this system offers the possibility of adapting the main features of the time–voltage profile generated (dip depth, dip duration, the ramp slope during the recovery process after clearing fault, etc.) to the specific requirements set forth by the grid operation codes, in accordance with different network electrical systems standards. Second, another remarkable ability of this system is to provide sinusoidal voltage and current wave forms during the overall testing process without the presence of harmonic components. This is made possible by the absence of electronic converters. Finally, the paper includes results and a discussion on the experimental data obtained with the use of a reduced size laboratory prototype that was constructed to validate the operating features of this new device
    corecore