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Surface-based and solid shell formulations of the 7-parameter shell
model for layered CFRP and functionally graded power-based
composite structures

Abstract

In this study, we present the extension of the so-called 7-parameter shell formula-
tion to layered CFRP and functionally graded power-based composite structures using
two different parametrizations: (i) the three-dimensional shell formulation, and (ii) the
solid shell approach. Both numerical strategies incorporate the use of the Enhanced As-
sumed Strain (EAS) and the Assumed Natural Strain (ANS) methods to alleviate locking
pathologies and are implemented into the FE code ABAQUS. The applicability of the
current developments is demonstrated by means of several benchmark examples, whose
results are compared with reference solutions using shell elements of ABAQUS, exhibiting
an excellent level of accuracy
Keywords: Shells; Composite materials; Finite element method; Functionally graded ma-
terials

1 Introduction

In the last decades, an increasing interest in the incorporation of advanced composite materials
in engineering structures has been devised. This trend arises from the need of producing
components with an optimized behavior especially within the aerospace and automotive sectors.
In general, composites offer several attractive advantages over traditional metallic materials and
alloys due to their exceptional stiffness-weight and strength-weight ratios.

As a consequence of these demands, the profound knowledge related to the structural per-
formance of shell-based composite structures has motivated the development of a large number
of novel structural models and their corresponding numerical implementations. Formulations
relying on the classical Kirchhoff-Love (known as 3-parameter model) and the Reissner-Mindlin
(5-p model) concepts have been extensively employed in order to predict the mechanical perfor-
mance of isotropic and composite shells undergoing small strains. However, the inextensibility
of the shell director vector in both theories can lead to inaccurate results as well as the preclusion
of the use of unmodified three-dimensional material models.

The previous limitations can be circumvented by means of refined theories, especially for
laminated and functionally graded composite shells. Within this context, Carrera proposed the
so-called Unified Formulation (CUF) [1, 2, 3], which introduced a basic kernel together with a
series of thickness functions (using either series expansion or interpolation polynomials, among
others) in order to generate different structural models, covering both equivalent single layer
(ESL) and Layer-Wise (LW) approaches, see e.g. [4, 5, 6, 7, 8, 9, 10]. The compact representa-
tion of the CUF allows the achievement of a higher numerical accuracy through increasing the
order of the underlying theoretical model. The potential of such modeling framework has been
comprehensively proven by its application to coupled problems [11], and vibration analysis [12],
among others.

Alternatively to CUF technique, shell formulations based on exact geometry concepts have
been exploited in the last few years [13, 14, 15, 16]. This approach be interpreted as a step back
into the 3-D continuum, as is envisaged in the fundamental works of Ericksen and Truesdell
[17] and Nagdhi [18]. Complying with this approximation, usually denominated as continuum-
based degenerated shell elements, the displacement and the position vector of the shell body (in
the reference and current configurations) can be expressed as an infinite sum of functions of
the in-plane coordinates M(ξ1, ξ2) ⊂ R2, which are multiplied by a series of terms which are
expanded over the thickness direction F (ξ3) ⊂ R, whereby ξ1, ξ2 denote the in-plane curvilinear
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coordinates and ξ3 identifies the out-of-plane coordinate. The truncation of such expansion up
to the linear [19], quadratic [20] and cubic [21] terms in ξ3 leads to the development of the
so-called 6-p, 7-p and 12-p models, respectively.

In particular, since low-order interpolations are generally recommended for computationally
efficient nonlinear applications, a special attention has been paid to the development of locking-
free finite elements relying on the 6-p formulation. However, this shell model suffers from severe
locking pathologies, which has been remedied through different numerical techniques in com-
bination with the Assumed Natural Strain (ANS) [22, 23] method: (i) the Enhanced Assumed
Strain (EAS) method [24, 25, 26, 27], (ii) the development of hybrid element formulations
[28, 29, 30, 31, 32], and (iii) the use of the Reduced Integration (RI) [33, 34] techniques, among
many other computational procedures.

Recalling Bischoff and Ramm, the 7-p shell model offers a good trade-off between numerical
efficiency (using first-order elements) and accuracy for complex nonlinear simulations, see [15,
19, 35, 36, 37]. This formulation has been successfully extended to composite structures in
[38, 39] and combined with fracture and damage methods in [40, 41, 42, 43]. Nevertheless, as
discussed in [44], the 7-p model allows two different parametrization of the shell geometry to be
considered: (i) three-dimensional shell elements (surface-based FE meshes), which consider a
reference surface of the shell [20, 45, 16], and (ii) solid shell elements (solid-based FE meshes)
that employs the position vectors of two points of the top and bottom surfaces of the body to
define the shell kinematic field.

This paper addresses the extension of the 7-p shell model to composite laminated and
functionally graded shell structures exploiting both parametrizations mentioned above, paying
special attention to specific aspects regarding the implementation into finite element routines
and the corresponding numerical performance. In line with [38, 39], locking pathologies are
alleviated through the combined use of the EAS and ANS methods.

The rest of the manuscript is organized as follows. The fundamental concepts and notation
of the current shell models are introduced in Sect.2. The fundamental of the EAS method
and the constitutive formulations herewith developed for composites are presented in Sect.3,
whereas Sect.4 addresses the numerical assessment of the current derivations. Finally, the main
conclusions of this investigation are summarized in Sect.5.

2 Shell formulation: 7-parameter model

In this section, we briefly discuss the basic aspects of the 7-p model under consideration for the
simulation of thin-walled composite structures. As mentioned above, two different kinematic
parametrization are comprehensively analyzed: (i) the three-dimensional shell model (surface-
based FE meshes) [15, 19], which is presented in Sect. 2.2, and (ii) the solid shell model
[46], whose fundamental aspects are given in Sect. 2.3. The current derivations are presented
within the context of the nonlinear Continuum Mechanics setting in order to provide a general
modeling framework.

2.1 Basic notation

Consider an arbitrary shell body whose reference placement is identified by B0 ∈ R3. This shell
experiences a macroscopic motion within a time interval [0, t], which is denoted as ϕ(X, t) :
B0 × [0, t]→ R3, mapping the reference material points (X(ξ) ∈ B0) onto the current material
points (x(ξ) ∈ Bt), such that x = ϕ(X, t), see Fig. 1. The reference and current position
vectors are functions of the material coordinates ξ = {ξ1, ξ2, ξ3}, which denote the parametric
curvilinear coordinates ξi ∈ [−1, 1] with i = 1, 2, 3. These coordinates are introduced in order
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to adequately describe the geometry and kinematics of curved structures. With the previous
definitions at hand, the displacement field accordingly reads: u(ξ) := x(ξ)−X(ξ).

Reference configuration Current configuration

��3

��1

��2

Figure 1: Shell body in the curvilinear setting. Reference B0 and current Bt configurations,
whose position vectors for a material point are denoted by X and x respectively, whereas the
corresponding Jacobi matrices are given by J and j.

The covariant basis vectors Gi and gi in the reference and current configurations, which
represent tangents to the coordinate lines ξi, render

Gi =
∂X(ξ)

∂ξi
; gi =

∂x(ξ)

∂ξi
= Gi +

∂u(ξ)

∂ξi
; i = 1, 2, 3; (1)

satisfying Gi ·Gj = δji and gi ·gj = δji , where δji is the Kronecker delta. The metric coefficients
are given by: gij = gi ·gj and Gij = Gi ·Gj. The Jacobi matrices referred to the transformations
between the parametric space in the reference, J(ξ), and in the current, j(ξ), configurations
read:

J(ξ) = [G1,G2,G3]T , j(ξ) = [g1,g2,g3]T (2)

The respective covariant basis vectors referred to the shell midsurface (ξ3 = 0) are given by

Aα =
∂R(ξ1, ξ2)

∂ξα
= R,α ; aα =

∂r(ξ1, ξ2)

∂ξα
= r,α ; α = 1, 2, (3)

where R(ξ1, ξ2) and r(ξ1, ξ2) denote the mid-surface shell position vectors in the reference and in
the current configurations, respectively. The shell director vector in the reference configuration
A3 is defined perpendicular to the covariant in-plane vectors A1 and A2 in the form:

A3(ξ1, ξ2) =
H

2

A1 ×A2

|A1 ×A2|
, (4)

where H is the initial shell thickness that is used for normalizing the out-of-plane director
vector in the reference configuration.
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The displacement-derived deformation gradient is defined as: Fu := ∂Xϕ(X, t), where J =
det[Fu] is the Jacobian of the transformation, and ∂X identifies the partial derivative with
respect to the Lagrangian frame.

We also define the displacement-derived right Cauchy-Green strain tensor, Cu, and the
Green-Lagrange strain tensor, Eu, as

Cu := [Fu]T Fu; Eu :=
1

2
[Cu − I2] , (5)

where I2 is the material covariant metric.
The compatible Green-Lagrange strain tensor can be expressed according to the following

decomposition [15]:

Eu
ij = pij +

H

2
ξ3qij +

H2

4
(ξ3)2sij, with i, j = 1, 2, 3; (6)

where pij, qij and sij denote the constant, linear and quadratic strain components in terms of
the thickness coordinate ξ3. As discussed in [15], the components sij are omitted in the sequel
due to their minor contribution, especially in thin-walled applications complying with small
strain conditions. Therefore, we restrict our analysis to the following form of the compatible
Green-Lagrange strain tensor: Eu

ij ≈ pij + H
2
ξ3qij.

The definition of the constant strain components in Eq.(6) are given by

pαβ :=
1

2
[aα · aβ −Aα ·Aβ] , (7)

pα3 :=
1

2
[aα ·A3 −Aα ·A3] , (8)

p33 :=
1

2
[a3 · a3 −A3 ·A3] , (9)

where pαβ are the membrane terms of the Kirchhoff-Love model, pα3 identify the Reissner-
Mindlin shear forces, and p33 is the normal strain component along the thickness direction.

Similarly, the definition of the linear strain components render

qαβ :=
1

H
[aα · a3,β + aβ · a3,α −Aα ·A3,β −Aβ ·A3,α] , (10)

qα3 :=
1

H
[a3,α · a3 −A3,α ·A3] , (11)

q33 := 0 (12)

where qαβ are the curvature changes (q11 and q22) associated with the Kirchhoff-Love model,
q12 denotes the twisting strain component of Kirchhoff-Love formulation and qα3 stand for the
transverse shear curvatures.

The previous parametrization recalls the so-called 6-p model. This formulation yields to
constant transverse normal strain components for pure bending applications since, p33 6= 0
and q33 = 0, suffering from the well-known Poisson thickness locking when the Poisson ratio is
different from zero (ν 6= 0). In this work, this pathology is remedied through the use of the EAS
method [15, 35, 37, 47], affecting specifically the linear transverse normal strain component q33

as follows:
E33 = Eu

33 + ξ3q̃33(ξ1, ξ2) = p33 + ξ3q̃33(ξ1, ξ2). (13)
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where q̃33(ξ1, ξ2) is an incompatible linear strain term along the thickness direction, which leads
to the identification of the 7-p model.

The corresponding second Piola-Kirchhoff static quantities nij and mij energetically conju-
gated to pij and qij, respectively, are defined as

nij :=

∫ +1

−1

Sijµ̂ dξ3; mij :=

∫ +1

−1

Sijξ3µ̂ dξ3, (14)

where nij and mij identify the constant (forces) and linear (moments) stress resultants per
unit length, respectively, see [15, 19] for more details, and µ̂ stands for the transformation
of the volume integrals into an integration over the shell mid-surface via the shifter tensor
Z := Gi ⊗Ai.

The constitutive tensor of the shell, C, with reference to the shell mid-surface is derived
through the use of the numerical integration across the thickness:

Dijkl
k =

∫ +1

−1

(ξ3)kCijkl

(
H

2

)k+1

µ̂ dξ3, k = 0, 1, 2. (15)

The constitutive operator can be expressed as a function of the thickness coordinate ξ3 as
follows: [

nij

mij

]
=

[
Dijkl

0 Dijkl
0

Dijkl
1 Dijkl

2

][
pij
qij

]
, (16)

with

Dijkl
k =

∫ +1

−1

(ξ3)kCijkl

(
H

2

)k+1

µ̂ dξ3, k = 0, 1, 2; (17)

The stress and strain components of the model are arranged according to the following
order: [

nij,mij
]

=
[
n11, n12, n13, n22, n23, n33,m11,m12,m13,m22,m23,m33

]T
(18a)

[pij, qij] = [p11, p12, p13, p22, p23, p33, q11, q12, q13, q22, q23, q33]T (18b)

It is worth noting that the current shell model embodies a complete description of the
Green-Lagrange strain tensor, Eu, and it is energetically conjugated second Piola-Kirchhoff
stress tensor S. This aspect allows the use of three-dimensional material laws, precluding the
adoption of plane-stress assumptions as is the case in 3-p and 5-p shell models.

2.2 Three-dimensional shell parametrization

The parametrization of the shell model presented in this section is denominated as three-
dimensional shell parametrization, which envisages a surface-oriented formulation. Fig. 2.a
depicts the main attributes with regard to the kinematic arguments of the current shell model.
In particular, the deformation of the reference shell surface is encompassed through the defini-
tion of six local degrees of freedom. These kinematic parameters are arranged as: (i) a vector
containing the displacement of the shell surface v(ξ1, ξ2), and (ii) a difference vector w(ξ1, ξ2)
which triggers the mapping of the shell director vector along the deformation process. Adopting
such parametrization, the following relationships are defined:

r(ξ1, ξ2) = R(ξ1, ξ2) + v(ξ1, ξ2); a3(ξ1, ξ2) = A3(ξ1, ξ2) + w(ξ1, ξ2). (19)

This parametrization endows: (i) a simple linear structure with regard to the kinematic
field, Eq.(19), (ii) the avoidance of rotational degrees of freedom to characterize the update of
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Reference configuration Current configuration

Element  node

Finite element discretization: 4-node shell

a

b

Figure 2: Three-dimensional shell parametrization. (a) Linear parametrization of the shell
midsurface and the director vector. (b) Finite element discretization.

the shell director vector [16], and (iii) the stretching of the shell director vector in a consistent
manner.

Note also that, due to the fact that in the current shell formulation the seventh degree
of freedom is activated via the EAS method, the kinematic boundary conditions can be only
prescribed for the six displacement components, i.e. the three components of the vectors v
and w which should be defined in a consistent manner. In this sense, the boundary conditions
associated with the displacement degrees of freedom of the shell midsurface v = [v1, v2, v3] have
the same physical meaning as in Classical Shell Theories (3-p and 5-p models). Conversely,
the prescription of the components of the difference vector w = [w1, w2, w3] encounters slight
differences in comparison to the clamped conditions that rotational degrees of freedom intro-
duce. In particular, the restriction of the rotation around 1-axis or 2-axis can be carried out
by constraining w2 = 0 and w1 = 0, respectively. This can be appreciated in Fig. 3.a for
the kinematic condition Λ1 = 0 (rotation around 1-axis), for the 5–p shell model, whereas in
the case of the flat plate (for simplicity) this corresponds to w2 = 0 in the present 7–p shell
formulation.

Furthermore, in order to have a correct interpretation of the significance of the degrees
of freedom of the difference vector w, it is necessary to conceive the shell structure similar
to a three-dimensional body. This issue becomes especially relevant in the case of imposing
symmetry boundary conditions, which require more careful considerations. Thus, in Fig. 3.b,
the graph on the left side is related to a kinematic field including three displacements and two
rotations (5–p shell model), whereas the plot on the right side corresponds to the present 7–p
shell model, making use of the difference vector for this issue. Thus, the difference with regard
to the restriction in the kinematic field of the same symmetry condition (ξ2 = 0 is the symmetry
plane) becomes evident for alternative parametrizations to updated the shell director vector.

Finally, it is worth mentioning that the restriction of the remaining sixth kinematic degree
of freedom, w3 (Fig. 3), significantly differs from the “drilling degree of freedom” that usually
appears in FE packages (which introduces an artificial stiffness). In the present formulation,
the local degree of freedom w3 represents the thickness variation of the shell and should be
defined in order to ensure “a proper representation of the actual physical situation”, see [19].
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Kinematic condition: rotation around 1-axis constrained

Kinematic constraint: symmetry plane

a

b

Figure 3: Characterization of the boundary conditions associated with the difference vector
w for the three dimensional shell parametrization. (a) Kinematic condition: rotation around
1-axis is restrained. (b) Kinematic constraint: ξ2 = 0 identifies a symmetry plane.

2.3 Solid shell parametrization

The second parametrization complies with the so-called solid shell concept [46]. This approach
considers two displacements fields v(ξ1, ξ2) and w(ξ1, ξ2) for the description shell kinematics,
relating a pair of material points on the top and bottom surfaces of the shell, see Fig. 4.a. From
a mechanical perspective, the current shell parametrization contains the same geometric and
kinematic configurations (only translational degrees of freedom are defined for each node in the
subsequent FE formulation) of standard brick elements, but different in-plane and out-of-plane
structural responses are displayed.

Accordingly, the position vector of any reference material point is given by

X(ξ) =
1

2

[
1 + ξ3

]
Xt(ξ

1, ξ2) +
1

2

[
1− ξ3

]
Xb(ξ

1, ξ2), (20)

where the position vectors Xt and Xb denote the top and bottom surfaces of the shell in the
reference configuration, respectively. Eq.(20) can be rearranged as follows

X(ξ) =
1

2

[
Xt(ξ

1, ξ2) + Xb(ξ
1, ξ2)

]
+

1

2
ξ3
[
Xt(ξ

1, ξ2)−Xb(ξ
1, ξ2)

]
, , (21)

with

R(ξ1, ξ2) =
1

2

[
Xt(ξ

1, ξ2) + Xb(ξ
1, ξ2)

]
, (22)

A3(ξ1, ξ2) =
1

2
ξ3
[
Xt(ξ

1, ξ2)−Xb(ξ
1, ξ2)

]
. (23)
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Reference configuration Current configuration

Element  node

Finite element discretization: 8-node solid shell

a

b

Element  node

Figure 4: Solid shell parametrization. (a) Linear parametrization based on the displacements
corresponding to two points located on the top and bottom surfaces of the shell. (b) Finite
element discretization.

In a similar manner, the position vector in the current configuration adopts the following
representation:

x(ξ) = r(ξ1, ξ2) + ξ3a3(ξ1, ξ2). (24)

Therefore, the kinematic field renders

u(ξ) = x(ξ)−X(ξ) = v(ξ1, ξ2) + ξ3w(ξ1, ξ2), (25)

where v and w denote the displacement vectors of the shell midsurface and the director vector,
respectively. In comparison with the alternative shell parametrization discussed in Sect.2.2, the
vectors v and w for the solid shell formulation are given by

v(ξ1, ξ2) =
1

2

[
ut(ξ

1, ξ2) + ub(ξ
1, ξ2)

]
, (26)

w(ξ1, ξ2) =
1

2

[
ut(ξ

1, ξ2)− ub(ξ
1, ξ2)

]
, (27)

where ut and ub are the displacement vectors of the top and bottom surfaces of the shell,
respectively.

The current solid shell model offers some advantages with respect to surface-based shell
elements [34, 48, 47, 49]. In particular, the most appealing aspects are: (i) the prevention of
material overlapping in highly complex structures, especially in kinks and intersections; (ii) the
simpler adaption of FE models from geometrical data using CAD packages; (iii) the direct use
in applications concerning double-sided contact, among many others.

It is also worth mentioning that in contrast to alternative solid shell elements, the present
parametrization makes use of the so-called Dimensional Reduction Concept [38]. This is carried
out through performing the numerical integration of the material law over the thickness coor-
dinate. Therefore, this solid shell formulation is established in terms of the stress and strain
resultants as described in Sect.2.1.
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2.4 Shell finite element discretization

In this section, the FE discretization schemes corresponding to the parametrizations addressed
in Sects. 2.2 and 2.3 are outlined. As customary in FE methods, the discretization is performed
using ne non-overlapping Lagrangian elements, such that B0 ≈

⋃ne

e=1 B
(e)
0 .

For linear displacement interpolation, the standard shape functions defined on the shell
midsurface render

N I =
1

4

(
1 + ξ1

I ξ
1
) (

1 + ξ2
I ξ

2
)
, with ξ1

I , ξ
2
I = ±1, and I = 1, 2, 3, 4. (28)

According to the isoparametric concept, both the three-dimensional shell and the solid shell
parametrizations permit the interpolation of the reference and current geometry as follows:

X = R + ξ3A3 ≈
4∑
I=1

N IRI + ξ3N IAI
3 = NRe + ξ3NAe

3 (29)

x = r + ξ3a3 ≈
4∑
I=1

N IrI + ξ3N IaI3 = Nre + ξ3Nae3. (30)

In Eqs.(29)–(30), N corresponds to the shape-function operator at the element level; RI

and rI stand for the discrete midsurface position vectors in the reference and in the current
configurations, respectively, whose corresponding operators at the element level are denoted by
Re and re; AI

3 and aI3 are the reference and current nodal director vectors, respectively, which
are arranged into the operators Ae

3 and ae3 at the element level.
As discussed above, the two shell parametrizations herein considered lead to different ele-

ment topologies. On the one hand, the three-dimensional shell formulation endows a 4-node
shell element (Fig. 2.b) whereby special attention to the definition of the shell director vector
should be paid [38], see A. On the other hand, the solid shell parametrization results in a
8-node shell element, (Fig. 4.b), leading to a direct definition of the shell director vector by
exploiting the position vectors of the nodes at the top and bottom surfaces of the shell [39].

The interpolation of the displacement field u, its variation δu, and its increment ∆u read:

u ≈ Ñd; δu ≈ Ñδd; ∆u ≈ Ñ∆d, (31)

with
Ñd = Nv + ξ3Nw, (32)

and

Ñ =

N1 0 0 ξ3N1 0 0 · · · N4 0 0 ξ3N4 0 0
0 N1 0 0 ξ3N1 0 · · · 0 N4 0 0 ξ3N4 0
0 0 N1 0 0 ξ3N1 · · · 0 0 N4 0 0 ξ3N4

 (33)

The interpolation scheme given in Eq.(32) also holds for the variation and increment of the
displacement field. In the previous expressions, d represents the nodal displacement vector at
the element level, whilst the operator Ñ also depends upon the particular shell parametrization,
see [38, 39] for further details.

The displacement derived strain field Eu, its variation δEu and its increment ∆Eu are
interpolated through a suitable compatibility operator B as follows:

Eu ≈ B(d)d, δEu ≈ B(d)δd, ∆Eu ≈ B(d)∆d. (34)

The operator B contains the derivatives of the shape functions with respect to the global
coordinate setting, whose particular forms for both shell parametrizations under analysis are
detailed in B.
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3 The EAS method and constitutive formulation

3.1 Variational basis of the EAS method

In this section, we discuss the variational basis for the use of the EAS method within the
context of geometrically nonlinear theory. The starting point in the corresponding derivation
concerns the mixed Hu-Washizu variational principle adopting a total Lagrangian formulation
[25, 50].

In line with [15], the additive decomposition of the total Green-Lagrange strain tensor into a
displacement-derived Eu and an incompatible Ẽ counterparts, E = Eu+Ẽ, is herewith adopted.
The resulting variation of the Hu-Washizu functional reads [47]:

δΠ(u, δu, Ẽ, δẼ) =

∫
B0

S : δEu dΩ+

∫
B0

S : δẼ dΩ−δΠext = δΠint−δΠext = 0, ∀δu ∈ V , δẼ ∈ V Ẽ,

(35)
where V = {δu ∈ [H1(B0)] : δu = 0 on ∂B0,u} stands for any kinematic admissible virtual dis-

placements, which satisfy the essential boundary conditions; V Ẽ = [L2(B0)] is the admissible
space corresponding to the incompatible strains, whilst δΠint and δΠext identifying the internal
and external contributions, respectively. The stress field is removed from Eq.(35) by impos-
ing the so-called orthogonality condition between the interpolation spaces associated with the
stress and the enhanced strain fields [50, 25]

The consistent linearization of the nonlinear system in Eq.(35) is given by

∆δΠ(u, δu,∆u, Ẽ, δẼ,∆Ẽ) =

∫
B0

∆S : δEu dΩ +

∫
B0

S : ∆δEu dΩ +

∫
B0

∆S : δẼ dΩ, (36)

where the linearized virtual Green-Lagrange adopts the form

∆δEu =
1

2
[δgi ·∆gj + ∆gi · δgj] Gi ⊗Gj, (37)

and the corresponding linearization of the stress field renders:

∆S =
∂S

∂Eu
: ∆Eu +

∂S

∂Ẽ
: ∆Ẽ. (38)

The partial derivative of the stress tensor with respect to the strain tensor yields to the
definition of the fourth-order constitutive operator C := ∂S/∂E = ∂2

EEΨ, which is particularized
to layered composites and FGMs in Sect.3.3.

3.2 Interpolation of the incompatible strains

The interpolation of the incompatible strain field is expressed in terms of the operator M(ξ)
that is designed to alleviate the following locking pathologies: (i) membrane and in-plane shear
locking, (ii) volumetric locking, and (iii) Poisson thickness locking. Transverse shear and
trapezoidal locking are remedied by means of the ANS method as described in C.

The incompatible strain field Ẽ, its variation δẼ and its increment ∆Ẽ can be approximated
at the element level as follows:

Ẽ ≈M(ξ)ς, δẼ ≈M(ξ)δς, ∆Ẽ ≈M(ξ)∆ς, (39)

being ς the vector of the internal strain parameters at the element level.
As discussed in [38], the incompatible strains are defined via the operator M̃, which is con-

structed within the parametric space ξ = {ξ1, ξ2, ξ3}. Therefore, since that since the operator
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M is expressed in the global setting, a suitable transformation between the operators M̃ and
M is required. In this concern, the enhanced part of the strain field in different basis is given
by

Ẽ = Ẽij(G
i ⊗Gj) = ε̃0kl(A

k
0 ⊗Al

0), (40)

where ε̃0kl represent these components at the element center whose internal basis are denoted
as A0. After some manipulations [44], the enhanced strain tensor takes the form:

Ẽ = (T0)−T

[
detJ0

detJ

]
M̃ς = Mς, (41)

where T0 stands for a transformation matrix between the basis at the element centre and the
contravariant basis system at the integration points, and J and J0 identify the Jacobian and
its evaluation at the element center, respectively.

With regard to the form of the operator M̃, in the current research, a particular version
considering 22 enhanced strains is chosen, see [38, 39]. According to the strain arrangement
given in Eq.(18), this matrix can be expressed in the strain resultants space (pij, qij) as follows:

M̃ =

[
M̃p

M̃q

]
=

[
M̃7 07 04 04

07 M̃7 M̃q33
4 M̃4

]
(42)

with

M̃7 =


ξ1 0 0 0 ξ1ξ2 0 0
0 0 ξ1 ξ2 0 0 ξ1ξ2

0 0 0 0 0 0 0
0 ξ2 0 0 0 ξ1ξ2 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 (43)

M̃4 =


0 0 0 0
0 0 0 0
ξ1 ξ1ξ2 0 0
0 0 0 0
0 0 ξ2 ξ1ξ2

0 0 0 0

 M̃q33
4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 ξ1 ξ2 ξ1ξ2

 , (44)

being 0n null matrix of order 6×n. Note that the matrix M̃q33
4 only affects the strain component

q33, leading to the 7-p shell model [19].
The insertion of the interpolation schemes introduced in Eqs.(31) and (39) corresponding

to the displacements and the incompatible strains, respectively, into the residual and linearized
forms given in Eqs.(35)-(36) leads to a coupled nonlinear problem with two independent fields.
However, the incompatible strains can be removed at element level through the exploitation of
a static condensation procedure. At this point, it is important to remark that the number of
EAS parameters under consideration has a notable role with regard to the numerical efficiency
of the formulation, see [38, 39] for further details. Therefore, it is interesting to optimize the
number of EAS parameters depending on the application under analysis and the FE mesh.

3.3 Constitutive formulation

Two basic constitutive models for composite materials complying with the Kirchhoff-Saint-
Venant formulation (with a linear relationship S = C : E) are considered for both parametriza-
tions introduced above. The first material type is used to model layered composite shells
(Sect. 3.3.1) through the adoption of the ESL approach, whereas the second constitutive model
refers to power-based functionally graded materials (Sect. 3.3.2).
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3.3.1 Layered composite shells

From a mechanical point of view, laminated CFRP (Carbon Fiber Reinforced Polymer) compos-
ites are modeled in this study through the advocation of the ESL approach, which is especially
suitable for laminates with similar stiffness values between the composing layers. Henceforth,
two basic modeling assumptions are considered: (i) orthotropic material law for each lamina,
and (ii) perfectly bonded interlaminar behavior. Therefore, the constitutive tensor can be com-
puted by accounting for the dependence of the stacking sequence of the laminate over the shell
thickness coordinate ξ3 (Fig. 5.a):

C(ξ3) =



CNL
ξ̄3
NL
≤ ξ3 ≤ ξ̄3

NL+1 = +1

CNL−1 ξ̄3
NL−1 ≤ ξ3 ≤ ξ̄3

NL

.... .....

C2 ξ̄3
2 ≤ ξ3 ≤ ξ̄3

3

C1 − 1 = ξ̄3
1 ≤ ξ3 ≤ ξ̄3

2

. (45)

The thickness coordinate in Eq.(45) varies in the range ξ3 ∈ [−1,+1] after its normalization
by the total laminate thickness H, whereby H =

∑NL

i=1Hi, being NL the total number of laminae
and Hi the individual ply thickness.

The shell coordinate midsurface of each layer is denoted as ξ3
i and is given by

ξ3
i = −1 +

Hi

H
+

2

H

i−1∑
j=1

Hj i=1,...,NL (46)

In order obtained the resulting weighted averaged material properties of the complete lam-
inate, the constitutive temrs introduced in Eq.(15) take the form:

Dmnop
k =

NL∑
i=1

Hi

Hk+1

∫ 1

−1

µ̂ζi

[
−H −Hi(1− ζi) + 2

i∑
j=1

Hj

]
Cmnop
i dζL, k = 0, 1, 2; (47)

where i identifies the current lamina, and ξ3 is defined as:

ξ3 = −1 +
1

H

[
−HL(1− ζL) + 2

L∑
i=1

Hi

]
(48)

3.3.2 Functionally graded isotropic shells

The second constitutive model herewith considered regards power-based functionally graded
materials (FGMs). These materials are characterized by the smooth variation of the the volume
fractions of two or more constituents, usually along the thickness direction [39, 51, 52]. In a
general sense, the variation of the material properties over the shell thickness is governed by
the following classical mixture rule:

ι(ξ3) = ιmfm + ιcfc (49)

where the subscripts m and c denote the metallic and the ceramic components respectively, f is
the volume fraction of the corresponding phase, and ι is a generic material property. Adopting
a power law form, the corresponding volume fractions of both constituents are given by

fc =

[
ξ3

H
+

1

2

]n
(50)
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Figure 5: Constitutive models. (a) Laminated shell structure: local layer setting and definition
of auxiliary natural coordinates over the shell thickness ξ̄3

i . (b) Power-based functionally graded
composites: variation of the volume fraction of ceramic material fc through the thickness
coordinate ξ3.

fm = 1− fc, (51)

where n represents a volume fraction exponent.
Recalling standard arguments [53], the second Piola-Kirchhoff stress tensor, S(ξ3), and the

constitutive tensor, C(ξ3), as a function of ξ3 read

S(ξ3) = ∂EΨ(ξ3) = Sij(ξ3)Gi ⊗Gj, (52)

C(ξ3) = ∂2
EEΨ(ξ3) = Cijkl(ξ3)Gi ⊗Gj ⊗Gk ⊗Gl. (53)

In this regard, the value of the exponent n rules the composition of the constitutive model,
see the evolution of the ceramic constituent volume fraction within the shell body for different
values of n in Fig. 5.b. Thus, the case n = 0 identifies a fully ceramic structure, whereas when
n tends to infinity a fully metallic body is obtained.

4 Numerical examples

In this section, several geometrically linear and nonlinear examples are presented in order to
assess the performance of the surface-based (three dimensional shell) and the solid shell formu-
lations of the 7-parameter shell model for their application to layered CFRP and functionally
graded power-based composite structures. In the sequel, the three dimensional shell and the
solid shell parametrizations are labeled as TShell7p and SShell7p, respectively. All the compu-
tations are performed using the commercial FE package ABAQUS. Both element formulations
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are implemented in such code using the user-defined capability UEL according to the algorith-
mic treatment described in [38]. For comparison purposes for isotropic examples, numerical
solutions obtained from the computations are compared with the ABAQUS shell elements S4R
and S4 for the three dimensional shell models, whereas the ABAQUS continuum shell SC8R is
employed to evaluate the performance of the present solid shell formulation.

4.1 Scordelis–Lo roof under volume force

The first linear benchmark problem is known as the Scordelis–Lo roof test, which was conceived
for testing the membrane and bending performance of the elements [56]. A semi–cylindrical
shell mounted over two end diaphragms at the curved edges is subjected to self-weight loading
conditions, with a density value of ρ = 360 N/mm3, see Fig. 6.a. The geometric data for
the problem are: roof length L = 50 mm, radius R = 25 mm and thickness t = 0.25 mm.
The material parameters correspond to isotropic mechanical behavior with a Young’s modulus
E = 4.32× 108 N/mm2 and Poisson ratio ν = 0.
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Figure 6: Scordelis–Lo roof under volume force. (a) Geometry and load conditions. (b) Linear
analysis: comparison between ABAQUS S4, S4R and SC8R elements and TShell7p and SShell7p
elements.

One quarter of the roof is modeled due to symmetric conditions, the structure being dis-
cretized using 4, 8, 12 and 16 elements per side. The boundary conditions at the end diaphragms
are given by ux, uy = 0, accordingly to the frame represented in Fig. 6.a. The reference solution
adopted for the vertical displacement of the point located at the center of the free edge (A) is:
uy(A) = −0.3024 mm [61]. In Fig. 6.b, the normalized vertical displacements at the point A
for the current three-dimensional and the solid shell elements and for the ABAQUS elements
S4, S4R and SC8R are represented. Observing this plot, it is clearly evident the very good
agreement achieved between both 7–parameter shell elements and the ABAQUS elements, and
also in comparison with the reference solution under consideration.

4.2 Pinched hemispherical shell with 18◦ hole

This example illustrates a classical double-curved shell problem. It serves to test the ability of
FE shell formulations to reproduce membrane and bending states correctly. This benchmark
application has been employed for validation purposes by different authors, see [16, 36, 23, 15,
57], just to name a few of them. The results can be found tabulated in Sze et al. [58] for
ABAQUS elements.
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The example considers an isotropic hemispherical shell with an 18◦ hole on the top, which
is subjected to two inward and two outward forces perpendicular to each other, see Fig. 7.a.
The geometric data are: radius R = 10 m and thickness t = 0.04 m. The material parameters
are: Young’s modulus E = 68.25 × 106 Pa and Poisson ratio ν = 0.3. Due to the symmetry
of the problem, only one quarter of the structure is modeled. In the case of the geometrically
linear applications, different meshes were considered, in particular 4, 8, 16 and 32 elements per
side.

A schematic representation of one of the boundary conditions applied to the model is shown
in Figs. 7.b and 7.c for the TShell7p and SShell7p parametrizations, respectively. In this
concern, note that, on the one hand, the TShell7p and S4 and S4R elements define one node
on the shell midsurface, making it possible to assign the load to this node. On the other hand,
the SShell7p elements provide a couple of nodes placed on the top and bottom surfaces of
the element, therefore the external pinching forces are distributed among these nodes and the
related displacements are averaged during the postprocessing stage.

z

x y

P P
BA

P P

a

b c

P

2-D Mesh: TShell7p 3-D Mesh: SShell7p

P/2

P/2

Figure 7: Pinched hemispherical shell with 18◦ hole. (a) Geometry and material data. (b)
Detail of applied load for the TShell7p parametrization. (c) Detail of applied load for the
SShell7p parametrization.

4.2.1 Linear analysis

Through the application of a concentrated force Pmax = 1 N, a study of the convergence of the
solution with respect to the reference value u

(A)
y = 0.094 mm provided by Simo et al. [60] is

presented in Fig. 8.a and is compared with the standard ABAQUS elements. In these graphs,
the normalized displacement with respect to the reference solution of the point A is plotted
versus the number of elements per side, whereby a very good agreement between the results
reported and the reference solutions can be appreciated.
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elements and TShell7p and SShell7p elements. (a) Linear analysis. (b) Comparison between
ABAQUS S4R element and TShell7p element: geometrically Nonlinear application. (c) (b)
Comparison between ABAQUS SC8R element and SShell7p element: geometrically Nonlinear
application.

Additionally, the results here obtained are reported in Table 1 and are correlated with those
corresponding to other element formulations due to Kasper and Taylor [29] (mixed enhanced
strain element) and Schwarze and Reese [61] (reduced integration, EAS and ANS element).
The current results exhibit a closer agreement with respect to the reference solutions for all the
meshes densities in comparison to the alternative shell formulations cited above.

Ne TShell7p SShell7p Kasper and Taylor [29] Schwarze and Reese [61]
4 0.959 1.047 0.039 1.043
8 0.979 1.008 0.732 1.002
16 0.988 1.003 0.989 0.993
32 0.993 1.0001 0.998 0.994

Table 1: Pinched hemispherical shell with 18◦ hole: normalized displacements. Ne denotes the
number of elements per side. The results were obtained using the following procedures to avoid
locking: 22 parameters by means of the EAS Method and the ANS Method for transverse shear
and curvature thickness locking.

4.2.2 Geometrically nonlinear analysis

In the case of the geometrically nonlinear application, each of the applied loads reach a value
of Pmax = 400 N [16]. Figs. 8.b and 8.c depict the numerical correlation obtained using a
mesh density of 16×16 elements in comparison with the ABAQUS elements S4R and SC8R for
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the TShell7p and SShell7p parametrizations, respectively. In these plots, an excellent accuracy
with respect to the reference solutions can be observed.

From the resolution process standpoint, due to the different physical meaning of the nodal
degrees of freedom 4, 5 and 6 for the TShell7p approach (corresponding to the difference vector
w) in comparison to the standard ABAQUS elements, severe convergence problems are found
in achieving equilibrium solutions. To overcome such difficulties, the arc-length Riks Method
implemented in ABAQUS Standard is employed, for which 458 time steps are required in order
to achieve the final load. In contrast to this, the SShell7p formulation allows a load control
time step to be employed without finding severe convergence difficulties in achieving equilibrium
solutions. Therein, an initial and a maximum increment load size of 5% of the final load is
selected, requiring 92 steps to achieve the final load with a minimum load increment equal to
0.7031%.

4.3 Pinched cylinder with end diaphragms

Another well-known isotropic benchmark problem for cylindrical shells is the pinched cylinder
with end diaphragms. Due to symmetry of the structure, only one one-eighth of the cylinder
is modeled. The geometrical characteristic of this example are portrayed in Fig. 9.a, with
radius R = 300 mm, length L = 600 mm, thickness t = 3 mm for the geometrically linear
case, whereas radius R = 100 mm, length L = 200 mm, thickness t = 1 mm defines the
geometrically nonlinear case (note that the geometrical ratios R/L and t/L are equivalent
between both cases). The structure is symmetrically compressed by the action of two opposite
loads on the midsurface of the cylinder (P = 12000 N), see Fig. 9.a. The material properties
are: Young’s modulus E = 30× 103 Pa and Poisson ratio ν = 0.3.
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Figure 9: Pinched Cylinder with end diaphragms. Geometry and material data

The structure is dominated by an inextensional bending and complex membrane states
which may cause membrane locking. Moreover, as a consequence of the highly curved and
thin geometry, curvature thickness and transverse shear locking effects take place. Therefore,
this example serves to test the elements performances under one of the most severe mechanical
conditions [57].

4.3.1 Linear analysis

For the geometrically linear applications, four different meshes are employed: 4, 8, 16 and 32
elements per side, i.e along AB. Fig. 9.b depicts the normalized radial displacement of the
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point A with respect to the reference solution (wA = 1.8541 × 10−5 mm, against the number
of elements per side [59]). As can be seen in the graph, the ABAQUS elements S4R and
SC8R and the TShell7p and SShell7p elements exhibit a poor accuracy for coarse meshes. A
very satisfactory convergence for both 7p formulations is achieved once the mesh refinement
is performed, especially for the TShell7p element which offers a very close performance to the
elements of ABAQUS. A specific deviation of around 3% with respect to the reference solution
is obtained for the SShell7p case.

4.3.2 Geometrically nonlinear analysis

In the case where geometrical nonlinearities are taken into consideration, one-eighth of the
cylinder is modeled using a mesh 40 × 40 shell elements, being adequate for the different
element typologies under study, namely, the TShell7p and SShell7p elements and the ABAQUS
elements S4R and SC8R [58].

For the TShell7p element, the convergence difficulties mentioned above are again found along
the loading process. Note that from the structural standpoint, this application does not exhibit
significant instabilities, and therefore the convergence problems along the resolution process
can be attributed to: (i) the different mechanical significance of the nodal degrees of freedom 4,
5 and 6 in comparison with those of the standard shell elements implemented in ABAQUS, see
[38] for a more comprehensive discussion, and (ii) the specific numerical tolerances to evaluate
the residual terms. In order to overcome such difficulties, computations are repeated using a
displacement control scheme, taking the initial and the maximum load step size as 1% of the
final load, and using different magnitudes of the artificial damping ABAQUS’s *stabilize

option (labeled with the suffix St). Figs. 10.a and 10.b depict the load against the radial
deflection of the points A and B obtained using the TShell7p element in comparison with the
numerical solution provided by the ABAQUS element S4R. In this diagram it is observed that
the smaller values of the ABAQUS’s *stabilize option are set, the closer agreement with the
ABAQUS element is achieved. Thus, the discrepancies between the results from the TShell7p
element with those corresponding to the reference solution are ascribed to the introduction of
the artificial damping in the numerical resolution process.

Differing from the previous case, for the SShell7p element, a nonlinear procedure using a
displacement control scheme, where the initial and the maximum load step size correspond to
1% of the final load, is successfully used. Figs. 10.c and 10.d depict the radial displacements of
the points A and B. These results are compared with the solutions obtained with the ABAQUS
element SC8R, exhibiting an excellent level of agreement.

4.4 Cantilever beam under distributed end load

4.4.1 Isotropic material law

This problem consists of a cantilever beam under distributed end forces, see Fig. 11.a (where u
and w denote the tip displacements along the x and z axis, respectively). This classical applica-
tion allows the out-of-plane bending performance of the elements implemented to be evaluated.
The present example has been extensively employed as a popular nonlinear benchmark problem
by a large number of authors, see [16, 23, 49] among many others. The results are tabulated
in Sze et al. [58] for meshes 8 × 1 (identified by Mesh 8) and 16 × 1 (identified by Mesh 16),
which adequate for the first-order reduced integration ABAQUS elements.

In the present analysis, the structure is discretized using 8 in-plane elements and one element
over the thickness direction. The geometrical data are: length L = 10 m, width b = 1 m and
thickness t = 0.1 m. The material properties correspond to: E = 1.2 MPa and ν = 0.
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Figure 10: Pinched cylinder with end diaphragms. (a) Comparison of the evolution of the radial
displacement at point A between the ABAQUS element S4R and the TShell7p element. (b)
Comparison of the evolution of the radial displacement at point B between the ABAQUS ele-
ment S4R and the TShell7p element. (c) Comparison of the evolution of the radial displacement
at point A between the ABAQUS element SC8R and the SShell7p element. (d) Comparison of
the evolution of the radial displacement at point B between the ABAQUS element SC8R and
the SShell7p element.

Figs. 11.b and 11.c show the correlation between the present TShell7p and SShell7p elements
with respect to the elements of ABAQUS S4R and SC8R, respectively, corresponding to the
tip displacements along x-direction (u) and along the z-direction (w). In both graphs, an
excellent agreement between the current shell elements and the reference results is observed.
These simulations are computed using the ABAQUS/Standard solver employing a load control
through the incremental Newton-Raphson scheme. The initial and maximum load step of 2.5%
of the final load was applied. From the numerical perspective, a total of 202 iterations and
40 load increments for reaching the final load for the TShell7p element, whereas the SShell7p
approach requires 141 iterations and 40 load increments. Note that for this second option
and in line with previous considerations, minor problems in obtaining equilibrium solutions are
found due to the fact that the nodal degrees of freedom have the same physical interpretation
as that for the ABAQUS elements.

4.4.2 Application to layered CFRP composites

This example examines the extension of both TShell7p and SShell7p models to layered CFRP
composites using a orthotropic law at lamina level. In line with the derivations outlined in
Sect.3.3.1, ESL model is adopted. In particular, the laminated structures herewith analyzed
consist of the stacking sequence [45/-45]S, the zero-degree direction being coincident with to the
x-axis (see the frame represented in Fig. 11.a). The orthotropic material properties selected for
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Figure 11: Cantilever beam subjected to distributed end load. (a) Geometry definition. (b)
Load–displacement evolution curves for tip displacements: comparison between the TShell7p
and S4R elements. (c) Load–displacement evolution curves for tip displacements: comparison
between the SShell7p and SC8R elements.

this application are reported in Table 2 (which are comparable to the isotropic case analyzed
above).

E11 (Pa) E22 = E33 (Pa) G12 = G13 = G23 (Pa) ν12 = ν13 = ν23 h∗L (m)
1.379× 106 1.448× 105 5.86× 104 0.21 0.025

Table 2: Tip cantilever beam. Composite material data, h∗L denoting the layer thickness.

Performing a similar analysis as that for the isotropic case, Fig. 12.a shows the tip dis-
placements, in x and z directions, of the points 1 and 2 (Fig. 11.a), which are denoted by
u and w, respectively. In this load-displacement evolution graph, the mechanical response of
the structure using the aforementioned Mesh 8 for its discretization is compared with the so-
lution provided by the ABAQUS element S4R, exhibiting an excellent agreement. Note that
the TShell7p 7-parameter behaves slightly stiffer than the reduced integration element S4R.
Similar conclusions can be attained for the case of the SShell7p element and its corresponding
correlation with the element SC8R of ABAQUS, as is portrayed in Fig. 12.b.

4.4.3 Application to power-based FGMs

The nonlinear case of FGMs for the problem under analysis is considered for the same load
and boundary conditions as described above. The material properties of the inhomogeneous
beam vary continuously through the thickness direction. The metallic and ceramic constituents
have the following properties: Em = 1.2 × 106 Pa, Ec = 2.589 × 106 Pa are Young’s moduli
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Figure 12: Cantilever beam subjected to distributed end load for layered composites with
laminate [45/-45]S. (a) Load–displacement evolution curves for tip displacements: compari-
son between the TShell7p and S4R elements. (b) Load–displacement evolution curves for tip
displacements: comparison between the SShell7p and SC8R elements.

corresponding to the metallic and the ceramic constituents respectively, whereas ν = 0 denotes
the Poisson ratio that is assumed to be constant across the element thickness.

Fig. 13.a depicts the TShell7p results of the tip displacement in x and z directions vs.
the external load applied for various volume fraction exponents n, which varies from the fully
ceramic surface to the fully metallic surface. From the numerical perspective, the Newton-
Raphson Method employed for the resolution process exhibits a good ratio of convergence for
all the cases.

Analyzing the reported data, it is worth mentioning that, as was expected, the bending
evolution curves of the FGMs are limited between the responses corresponding to the fully
metallic and the fully ceramic cases. Similarly, the results referred to the SShell7p element
using FGM law are depicted in Fig. 13.b. Coincident results are obtained for all the values of
the exponent n in comparison with the TShell7p element.

4.5 Pullout of an open-ended cylindrical shell

This benchmark test deals with a cylindrical shell subjected to two opposite concentrated forces
(Fig. 14.a, with radial displacements identified by WA, UB and Uc, for points A, B and C,
respectively), whereby the cylindrical shell undergoes a combination of membrane and bending
states [58].

The axial length of the cylinder is L = 10.35 m, with a radius R = 4.953 m and a shell
thickness of h = 0.094 m. In the case of isotropic constitutive law, the material properties
are: Young’s Modulus E = 10.5 × 106 Pa, and Poisson ratio ν = 0.3125. The pair of external
concentrated loads each has a value of 40 kN each of them. Regarding the boundary conditions,
the structure has free axial edges and only the symmetry conditions are imposed, therein one
eighth of the cylinder is modeled.

The cylinder is discretized using a mesh density of 16 × 24 elements (Fig. 14.a), in order
to be compared with the results reported in [58]. As was considered in previous applications,
the two 7-parameter shell elements examined in this work are applied to this problem, i.e. the
TShell7p and the SShell7p elements.
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Figure 13: Power-based FG tip cantilever beam subjected to end forces. (a) Load–displacement
evolution curves for the TShell7p formulation. (b) Load–displacement evolution curves for the
SShell7p formulation.

4.5.1 Isotropic material law

Simulations are conducted using either load control or displacement control schemes which
lead to the same quantitative results. Fig.14.b depicts the final deformed shape for the current
application using the TShell7p element with isotropic material law. Converged solutions are
compared with the results by modeling with standard ABAQUS elements S4R, for the case of
the TShell7p element, and SC8R for the SShell7p element.

The simulations are carried out through the use of the standard Newton-Raphson method,
using loading (with and without the ABAQUS’s parameter *stabilize, being the later option
labelled as St) and displacement control procedures (labeled as Ucont), whose main character-
istics are detailed in Table 3. The initial and the maximum load step applied was equal to 1%
of the final load for both procedures.

Label [ ∆p
pfinal

]min [ ∆p
pfinal

]max [∆pmax

pfinal
] Ninc Niter

TShell7p 1×10−8 0.01 0.516 70 533
TShell7p St 6.3×10−6 0.01 1 1358 5987

TShell7p Ucont 0.00625 0.01 1 42 186
SShell7p 6.59×10−5 0.01 1 118 300

SShell7p Ucont 0.01 0.01 1 100 373

Table 3: Pullout of an open-ended cylindrical shell: summary of the solution processes, TShell7p
and SShell7p elements. [ ∆p

pfinal
]min is the minimum load increment size; [ ∆p

pfinal
]min is the maxi-

mum load increment size; [∆pmax

pfinal
] denotes the final load reached; Ninc indicates the total number

of load increments; and Niter denotes the number of iterations for the complete solution process
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Figure 14: Pullout of an open-ended cylindrical shell. (a) Geometric and boundary conditions.
(b) Final deformed shape TShell7p element. (c) Comparison of the load-deflection curves
between the ABAQUS element S4R and the TShell7p element. (d) Comparison of the load-
deflection curves between the ABAQUS element SC8R and the SShell7p element.

First, with reference to the TShell7p, Table 3, it can be observed that employing the load
control procedure without any additional features, the numerical simulation only reached 51.6%
of the final load. However, by including the *stabilize option, the analysis is finished suc-
cessfully (1358 load increments and 5987 equilibrium iterations being required), and provides
satisfactory results in comparison with the reference solutions provided by the ABAQUS ele-
ment S4R, see Fig.14.c. On the other hand, using a displacement control scheme, it can be
appreciated how the simulations require a reduced number of step increments and iterations
(42 load increments and 186 equilibrium iterations), and therefore the solutions process seems
to achieve each of the equilibrium states along the load path with less computational efforts,
see Table 3.

Second, regarding the numerical results obtained for the SShell7p element, note that signifi-
cantly less convergence problems appeared during the analysis (see Table 3) as well as excellent
agreement with the ABAQUS element SC8R is obtained for loading and displacement control
procedures, see Fig.14.d.

4.5.2 Application to layered CFRP composites

The analysis of the problem under consideration is also performed using composite unidirec-
tional laminates. In line with the previous applications, the present implementation is validated
through performing a comparison of the results referred to the three-dimensional and the solid
shell 7-parameter shell elements are compared with those obtained using ABAQUS elements.

The material data are reported in Table 4. In a similar way as in the previous section, and
as a consequence of the existence of geometric symmetry, only one octant of the cylinder is
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considered in the analyses. Therefore, laminates that satisfy these symmetry conditions are
tested, namely [0/90/0] and [90/0/90] orientations, where the fiber direction is identified with
the circumferential axis of the cylinder.

The problem is modeled using a regular mesh of 16×24 elements. The load is applied using
an initial and maximum step size of 1% of the final load P = 30 kN, employing a nonlinear
load control scheme.

E11 (Pa) E22 = E33 (Pa) G12 = G13 = G23 (Pa) ν12 = ν13 = ν23 h∗
L (m)

3.11× 107 1.06× 107 2.9× 106 0.4 0.033

Table 4: Pullout of an open-ended cylindrical shell. Composite material data, h∗L denoting the
layer thickness

Figs. 15.a and 15.b depict the radial displacements for the point A, B and C ( 14.a) for the
TShell7p element for both laminate configurations. Comparisons of the present results with the
response obtained through the use of the ABAQUS element S4R are in close agreement, with
the TShell7p elements behaving slightly stiffer especially for the radial displacement of the point
A for the [90/0/90] laminate. From the computational standpoint, a loading control scheme is
employed for the nonlinear process, where the initial and the maximum step size being equal to
1% of the maximum load. The resolution procedure found significant convergence difficulties
in achieving equilibrium solutions, resulting in the step size being decreased to 1× 10−8 of the
total load for the laminate [0/90/0], whereas these absence numerical difficulties referred to the
solution process are not found for the laminate [90/0/90].
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Figure 15: Pullout of an open-ended layered cylindrical shell. Load-deflection curve using the
TShell7p element in comparison with the ABAQUS element S4R. (a) Laminate [0/90/0]. (b)
Laminate [90/0/90]. Load-deflection curve using the SShell7p element in comparison with the
ABAQUS element SC8R. (c) Laminate [0/90/0]. (d) Laminate [90/0/90].
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The results corresponding to the SShell7p element in comparison with the elements SC8R
of ABAQUS are shown in Figs. 15.c and 15.d, where a good level of agreement can be observed.
Note for the laminate [90/0/90], mid discrepancies are identified, especially for the evolutions of
the points B and C. In this regard, it is worth mentioning that the resolution process encounters
strong difficulties in achieving equilibrium solutions for the laminate [0/90/0], which requires
the use of the *stabilize option with a damping factor equal to 2 × 10−4 for this specific
configuration. Therefore, the incorporation of such artificial damping might be responsible for
such discrepancies in comparison with the solution of predicted by the elements of ABAQUS.

4.5.3 Application to power-based FGMs

For comparison purposes, the current cantivelever beam application is extended to FGMs.
The material properties are coincident with those reported in Sect.4.4.3, and imposing a pair
external point loads equal to 500 kN. The material gradation is again assumed over the thickness
direction of the shell. In Fig. 16 the obtained numerical results at the points A and B for the
TShell7p element are compared with those presented in [39] (corresponding to the SShell7p case)
which showed an excellent agreement with the reference data in [51] for the same application. In
these graphs, an very good correlation between TShell7p and SShell7p results can be observed.
Note also that from the qualitative point of view, as expected, the evolutions of the power-based
FGMs lie again within between the fully ceramic and the fully metallic configurations.
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Figure 16: Power-based FG pullout of an open-ended cylindrical shell. Radial deflection curves
at the points A and B: comparison between TShell7p and SShell7p results.
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5 Conclusions

In this paper, the consistent extensions of the 7p shell model for its application to layered CFRP
and functionally graded power-based composite structures have been developed. In particular,
two different kinematic parametrizations were employed and thoroughly described, namely the
three-dimensional shell formulation (surface-based FE meshes), and the so-called solid shell
approach (solid-based FE meshes). Both models have been implemented into the FE code
ABAQUS through the user-defined capability UEL. Locking pathologies have been remedied
through the combined use of the Enhanced Assumed Strain (EAS) and the Assumed Natural
Strain (ANS) methods.

The applicability of the current developments has been demonstrated via an extensive bench-
mark data base, whereby the numerical results obtained using both elements here proposed have
been compared to the alternative shell elements, either implemented into the software ABAQUS
or developed by other authors. The success of the computations can be attested from the overall
results obtained in geometrically linear and nonlinear ranges, and for the constitutive laws con-
sidered: homogeneous (isotropic material law) and composite (ESL approach and Functionally
Graded Materials) materials.

From the computational point of view, the so-called three-dimensional 7-p formulation en-
countered severe converging difficulties in achieving equilibrium solutions. This aspect was
attributed due to the fact that in such shell parametrization, the nodal degrees of freedom 4,
5 and 6 contains the kinematic information corresponding to the difference vector w instead
of rotations as in standard shell elements. Therefore, in some of the cases, the inclusion of the
ABAQUS’s *stabilize option in a Newton-Rapshon scheme as well as arc-length procedures
were required in order to reach the final load applied, conforming with the residual tolerance
criteria of ABAQUS. On the other side, the solid shell 7p formulation presented less numeri-
cal difficulties in achieving equilibrium solutions, since the nodal degrees of freedom have the
same significance as the elements of ABAQUS (coinciding with those referred to standard brick
elements).

Finally, further research activities might regard the incorporation of computational fracture
modeling capabilities as those developed by the authors in [41, 43], among others.
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A Definition of the shell director vector for the three

dimensional shell model

The definition of the shell director vector is inherently present within the discretization pro-
cedure of an arbitrary shell body using surface-based meshes for FE analyses. This vector
provides the thickness direction of the shell, which is currently of issue of notable importance
to represent the ut-of-plane behavior, and it contains the information about the direction of
the pre-integration of the material law.
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Definition of the shell director
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Average shell director option

Shell director option proposed by Bischoff  

Figure A.1: Definition of the shell director vector for the three dimensional shell parametriza-
tion: standard average procedure and spatial intersections of the actual three-dimensional
geometries as proposed in [55].

The natural choice of computing the shell director common to adjacent elements is due
to an averaging-type procedure, and hence, the inter-element continuity of the shell normal is
ensured as being

Dk =

∑Ne

e=1 Dk
e∥∥∥∑Ne

e=1 Dk
e

∥∥∥ (A.1)

where Dk
e denotes the shell director of the element e at the node k. This procedure violates

the condition of orthogonality with respect to the shell midsurface in addition to the material
overlapping. This is usually minimized by shell refinement, not representing a relevant problem,
although it is more pronounced at corners locations.

However, for the particular case of the three-dimensional shell parametrization, the standard
averaging procedure leads to artificial necking effects, making the structure more flexible at
these regions [55, 54]), see to the left of Fig A.1. Therefore, in the present formulation, the
shell director is recommended to be defined according to Bischoff [55], which is based on the
spatial intersections of the actual three-dimensional geometries, see to the right of Fig. A.1.

Moreover, as was pointed out in Bischoff et al. [54], this definition of the common director
vector between adjacent elements violates the orthogonality condition to the shell midsurface.
However, this aspect has a very minor role and vanishes with the mesh refinement. In view
of these arguments, the current option becomes especially suitable in the case of dealing with
smooth shells, whereas for problems involving kinks and intersections, the definition of individ-
ual shell directors together with drilling rotations can be assumed as the better choice [54].

Finally, note that the computation of the nodal director vector requires the use of an
auxiliary script as was described in [38]. This fact can be as a shortcoming of the current
parametrization since this average procedure specifically depends on the mesh characteristics.
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B Computation of the compatible displacements-strain

operators

This section presents the derivation of the compatible displacements-strain operators corre-
sponding to the three dimensional shell and the solid shell parametrizations outlined in Sects. 2.2
and 2.3, respectively.

With respect to the three dimensional shell parametrization using a 4-node element formu-
lation, the B-operator in Eq.(34) adopts the form:

δEu ≈ B(d)δd =
4∑
I=1

BIδdI =
4∑
I=1

[
BI
v BI

w

] [δvI
δwI

]
(B.2)

where the displacement vectors vI and wI are the misurface and difference displacement vectors
of the node I. Thus, the B-operator at nodal level is given by

BI =
[
BI
v BI

w

]
=


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,ξ2a3 N Ia2

01×3 N Ia3

N I
,ξ1a3,ξ1 N I
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,ξ2a2
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,ξ1a3,ξ2 +N I

,ξ2a3,ξ1 N Ia3,ξ1 +N I
,ξ1a3

01×3 N I
,ξ2a2

N I
,ξ2a3,ξ2 N Ia3,ξ2 +N I

,ξ2a3
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,ξ2a2
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

, (B.3)

where 01×3 is the null vector of dimension 1 × 3; and BI
v and BI

w stand for the parts of the
B-operator arranged in column form that are respectively referred to the displacement vectors
of the shell midsurface v and the director vector w.

In a similar manner, the discrete version of the B-operator corresponding to the solid shell
parametrization of the 7-p shell model reads

δEu ≈ B(d)δd =
4∑
I=1

BIδdI =
4∑
I=1

[
BI
t BI

b

] [δdIt
δdIb

]
(B.4)

where BI
b and BI

t denote the terms associated with the bottom and top nodal displacements
of the solid shell element using an 8-node element, respectively, and dIb and dIt denotes the
corresponding bottom and top displacement vectors for the corner point I of the element. The
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compact form of the B-operator renders

BI =
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(B.5)

C The ANS method

The ANS method in shells is a collocation technique which is used in this formulation for
the alleviation of two locking pathologies: (i) the transverse shear locking [22], and (ii) the
trapezoidal locking [23]. This method is implemented in combination to the EAS method, so
that locking free shell elements can be derived.

For the alleviation of the so-called transverse shear locking, the interpolation of the (com-
patible) constant transverse shear components p13 and p23 are evaluated at the collocation
points A, B, C and D (Fig. C.2) with: ξA = (0,−1, 0), ξB = (1, 0, 0), ξC = (0, 1, 0) and
ξD = (−1, 0, 0). The modified interpolation of the constant transverse shear components read[

pANS13

pANS23

]
=

[
(1− ξ2)p13(ξA) + (1 + ξ2)p13(ξC)

(1 + ξ1)p23(ξB) + (1− ξ1)p23(ξD)

]
(C.6)

Similarly, for the treatment of the trapezoidal locking, the constant transverse normal
strain component are evaluated at the collocation points M , N , O and P (Fig. C.2), with:
ξM = (−1,−1, 0), ξN = (1,−1, 0), ξO = (1, 1, 0) and ξP = (−1, 1, 0). Then, the modified
approximation of p33 renders

pANS33 =
4∑

m=1

Nm(ξ1, ξ2)p33; Nm(ξ1, ξ2) =
1

4

(
1 + ξ1

mξ
1
) (

1 + ξ2
mξ

2
)
, with m = M,N,O, P

(C.7)
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[36] N. Büchter, E. Ramm (1992) Shell theory versus degeneartion- a comparison in large rota-
tion finite element analysis. International Journal for Numerical Methods in Engineering,
34:39–59.
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