101 research outputs found

    Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success

    Get PDF
    Mammalian spermatozoa undergo a strong selection process along the female tract to guarantee fertilization by good quality cells, but risks of fertilization with DNA-damaged spermatozoa have been reported. In contrast, most external fertilizers such as fish seem to have weaker selection procedures. This fact, together with their high prolificacy and external embryo development, indicates that fish could be useful for the study of the effects of sperm DNA damage on embryo development. We cryopreserved sperm from rainbow trout using egg yolk and low-density lipoprotein as additives to promote different rates of DNA damage. DNA fragmentation and oxidization were analyzed using comet assay with and without digestion with restriction enzymes, and fertilization trials were performed. Some embryo batches were treated with 3-aminobenzamide (3AB) to inhibit DNA repair by the poly (ADP-ribose) polymerase, which is an enzyme of the base excision repair pathway. Results showed that all the spermatozoa cryopreserved with egg yolk carried more than 10% fragmented DNA, maintaining fertilization rates of 61.1+/-2.3 but a high rate of abortions, especially during gastrulation, and only 14.5+/-4.4 hatching success. Furthermore, after 3AB treatment, hatching dropped to 3.2+/-2.2, showing that at least 10% DNA fragmentation was repaired. We conclude that trout sperm maintains its ability to fertilize in spite of having DNA damage, but that embryo survival is affected. Damage is partially repaired by the oocyte during the first cleavage. Important advantages of using rainbow trout for the study of processes related to DNA damage and repair during development have been reported. Reproduction (2010) 139 989-997Junta de Castilla y Leon (Spain) [LE007A06]; University of Leoninfo:eu-repo/semantics/publishedVersio

    Teaching Resilience: Enabling Factors for Effective Responses to COVID-19

    Full text link
    The COVID-19 pandemic has disrupted higher education globally. Teaching staff have pivoted to online learning and employed a range of strategies to facilitate student success. Aside from offering a testing ground for innovative teaching strategies, the pandemic has also provided an opportunity to better understand the pre-existing conditions that enable higher education systems to be resilient - that is, to respond and adapt to disturbances in ways that retain the functions and structures essential for student success. This article presents a case study covering two transdisciplinary undergraduate courses at the University of Technology Sydney, Australia. The results highlight the importance of information flows, feedbacks, self-organisation, leadership, openness, trust, equity, diversity, reserves, social learning and nestedness. These results show that resilience frameworks developed by previous scholars are relevant to university teaching systems and offer guidance on which system features require protection and strengthening to enable effective responses to future disturbances

    Development and internal validation of a model for postoperative morbidity in adults undergoing major elective colorectal surgery: the peri-operative quality improvement programme (PQIP) colorectal risk model

    Get PDF
    Over 1.5 million major surgical procedures take place in the UK NHS each year and approximately 25% of patients develop at least one complication. The most widely used risk-adjustment model for postoperative morbidity in the UK is the physiological and operative severity score for the enumeration of mortality and morbidity. However, this model was derived more than 30 years ago and now overestimates the risk of morbidity. In addition, contemporary definitions of some model predictors are markedly different compared with when the tool was developed. A second model used in clinical practice is the American College of Surgeons National Surgical Quality Improvement Programme risk model; this provides a risk estimate for a range of postoperative complications. This model, widely used in North America, is not open source and therefore cannot be applied to patient populations in other settings. Data from a prospective multicentre clinical dataset of 118 NHS hospitals (the peri-operative quality improvement programme) were used to develop a bespoke risk-adjustment model for postoperative morbidity. Patients aged ≥ 18 years who underwent colorectal surgery were eligible for inclusion. Postoperative morbidity was defined using the postoperative morbidity survey at postoperative day 7. Thirty-one candidate variables were considered for inclusion in the model. Death or morbidity occurred by postoperative day 7 in 3098 out of 11,646 patients (26.6%). Twelve variables were incorporated into the final model, including (among others): Rockwood clinical frailty scale; body mass index; and index of multiple deprivation quintile. The C-statistic was 0.672 (95%CI 0.660–0.684), with a bootstrap optimism corrected C-statistic of 0.666 at internal validation. The model demonstrated good calibration across the range of morbidity estimates with a mean slope gradient of predicted risk of 0.959 (95%CI 0.894–1.024) with an index-corrected intercept of −0.038 (95%CI −0.112–0.036) at internal validation. Our model provides parsimonious case-mix adjustment to quantify risk of morbidity on postoperative day 7 for a UK population of patients undergoing major colorectal surgery. Despite the C-statistic of < 0.7, our model outperformed existing risk-models in widespread use. We therefore recommend application in case-mix adjustment, where incorporation into a continuous monitoring tool such as the variable life adjusted display or exponentially-weighted moving average-chart could support high-level monitoring and quality improvement of risk-adjusted outcome at the population level

    A comparison of cryopreservation methods: Slow-cooling vs. rapid-cooling based on cell viability, oxidative stress, apoptosis, and CD34+ enumeration of human umbilical cord blood mononucleated cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The finding of human umbilical cord blood as one of the most likely sources of hematopoietic stem cells offers a less invasive alternative for the need of hematopoietic stem cell transplantation. Due to the once-in-a-life time chance of collecting it, an optimum cryopreservation method that can preserve the life and function of the cells contained is critically needed.</p> <p>Methods</p> <p>Until now, slow-cooling has been the routine method of cryopreservation; however, rapid-cooling offers a simple, efficient, and harmless method for preserving the life and function of the desired cells. Therefore, this study was conducted to compare the effectiveness of slow- and rapid-cooling to preserve umbilical cord blood of mononucleated cells suspected of containing hematopoietic stem cells. The parameters used in this study were differences in cell viability, malondialdehyde content, and apoptosis level. The identification of hematopoietic stem cells themselves was carried out by enumerating CD34<sup>+ </sup>in a flow cytometer.</p> <p>Results</p> <p>Our results showed that mononucleated cell viability after rapid-cooling (91.9%) was significantly higher than that after slow-cooling (75.5%), with a <it>p </it>value = 0.003. Interestingly, the malondialdehyde level in the mononucleated cell population after rapid-cooling (56.45 μM) was also significantly higher than that after slow-cooling (33.25 μM), with a <it>p </it>value < 0.001. The apoptosis level in rapid-cooling population (5.18%) was not significantly different from that of the mononucleated cell population that underwent slow-cooling (3.81%), with a <it>p </it>value = 0.138. However, CD34<sup>+ </sup>enumeration was much higher in the population that underwent slow-cooling (23.32 cell/μl) than in the one that underwent rapid-cooling (2.47 cell/μl), with a <it>p </it>value = 0.001.</p> <p>Conclusions</p> <p>Rapid-cooling is a potential cryopreservation method to be used to preserve the umbilical cord blood of mononucleated cells, although further optimization of the number of CD34<sup>+ </sup>cells after rapid-cooling is critically needed.</p

    Predicting severe pain after major surgery: a secondary analysis of the Peri-operative Quality Improvement Programme (PQIP) dataset

    Get PDF
    Acute postoperative pain is common, distressing and associated with increased morbidity. Targeted interventions can prevent its development. We aimed to develop and internally validate a predictive tool to pre-emptively identify patients at risk of severe pain following major surgery. We analysed data from the UK Peri-operative Quality Improvement Programme to develop and validate a logistic regression model to predict severe pain on the first postoperative day using pre-operative variables. Secondary analyses included the use of peri-operative variables. Data from 17,079 patients undergoing major surgery were included. Severe pain was reported by 3140 (18.4%) patients; this was more prevalent in females, patients with cancer or insulin-dependent diabetes, current smokers and in those taking baseline opioids. Our final model included 25 pre-operative predictors with an optimism-corrected c-statistic of 0.66 and good calibration (mean absolute error 0.005, p = 0.35). Decision-curve analysis suggested an optimal cut-off value of 20–30% predicted risk to identify high-risk individuals. Potentially modifiable risk factors included smoking status and patient-reported measures of psychological well-being. Non-modifiable factors included demographic and surgical factors. Discrimination was improved by the addition of intra-operative variables (likelihood ratio χ2 496.5, p < 0.001) but not by the addition of baseline opioid data. On internal validation, our pre-operative prediction model was well calibrated but discrimination was moderate. Performance was improved with the inclusion of peri-operative covariates suggesting pre-operative variables alone are not sufficient to adequately predict postoperative pain

    Evidence for an association between migraine and the hypocretin receptor 1 gene

    Get PDF
    The aim of our study was to investigate whether genetic variants in the hypocretin receptor 1 (HCRTR1) gene could modify the occurrence and the clinical features of migraine. Using a case–control strategy we genotyped 384 migraine patients and 259 controls for three SNPs in the HCRTR1 gene. Genotypic and allelic frequencies of the rs2271933 non-synonymous polymorphism resulted different (χ2 = 9.872, p = 0.007; χ2 = 8.108, p = 0.004) between migraineurs and controls. The carriage of the A allele was associated with an increased migraine risk (OR 1.42, 95% CI 1.11–1.81). When we divided the migraine patients into different subgroups, the difference reached the level of statistical significance only in migraine without aura. The different genotypes had no significant effect on the examined clinical characteristics of the disease. In conclusion, our data supports the hypothesis that the HCRTR1 gene could represent a genetic susceptibility factor for migraine without aura and suggests that the hypocretin system may have a role in the pathophysiology of migraine

    Novel SPG11 mutations in Asian kindreds and disruption of spatacsin function in the zebrafish

    Get PDF
    Autosomal recessive hereditary spastic paraplegia with thin corpus callosum (HSP-TCC) maps to the SPG11 locus in the majority of cases. Mutations in the KIAA1840 gene, encoding spatacsin, have been shown to underlie SPG11-linked HSP-TCC. The aim of this study was to perform candidate gene analysis in HSP-TCC subjects from Asian families and to characterize disruption of spatacsin function during zebrafish development. Homozygosity mapping and direct sequencing were used to assess the ACCPN, SPG11, and SPG21 loci in four inbred kindreds originating from the Indian subcontinent. Four novel homozygous SPG11 mutations (c.442+1G>A, c.2146C>T, c.3602_3603delAT, and c.4846C>T) were identified, predicting a loss of spatacsin function in each case. To investigate the role of spatacsin during development, we additionally ascertained the complete zebrafish spg11 ortholog by reverse transcriptase PCR and 5′ RACE. Analysis of transcript expression through whole-mount in situ hybridization demonstrated ubiquitous distribution, with highest levels detected in the brain. Morpholino antisense oligonucleotide injection was used to knock down spatacsin function in zebrafish embryos. Examination of spg11 morphant embryos revealed a range of developmental defects and CNS abnormalities, and analysis of axon pathway formation demonstrated an overall perturbation of neuronal differentiation. These data confirm loss of spatacsin as the cause of SPG11-linked HSP-TCC in Asian kindreds, expanding the mutation spectrum recognized in this disorder. This study represents the first investigation in zebrafish addressing the function of a causative gene in autosomal recessive HSP and identifies a critical role for spatacsin during early neural development in vivo

    Cholesterol and Lipoprotein Dynamics in a Hibernating Mammal

    Get PDF
    Hibernating mammals cease feeding during the winter and rely primarily on stored lipids to fuel alternating periods of torpor and arousal. How hibernators manage large fluxes of lipids and sterols over the annual hibernation cycle is poorly understood. The aim of this study was to investigate lipid and cholesterol transport and storage in ground squirrels studied in spring, summer, and several hibernation states. Cholesterol levels in total plasma, HDL and LDL particles were elevated in hibernators compared with spring or summer squirrels. Hibernation increased plasma apolipoprotein A-I expression and HDL particle size. Expression of cholesterol 7 alpha-hydroxylase was 13-fold lower in hibernators than in active season squirrels. Plasma triglycerides were reduced by fasting in spring but not summer squirrels. In hibernators plasma β-hydroxybutyrate was elevated during torpor whereas triglycerides were low relative to normothermic states. We conclude that the switch to a lipid-based metabolism during winter, coupled with reduced capacity to excrete cholesterol creates a closed system in which efficient use of lipoproteins is essential for survival

    Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues

    Get PDF
    This work was supported by the Leverhulme Trust (Grant number RL2012-025). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Current drugs to treat African sleeping sickness are inadequate and new therapies are urgently required. As part of a medicinal chemistry programme based upon the simplification of acetogenin-type ether scaffolds, we previously reported the promising trypanocidal activity of compound 1 , a bis-tetrahydropyran 1,4-triazole (B-THP-T) inhibitor. This study aims to identify the protein target(s) of this class of compound in Trypanosoma brucei to understand its mode of action and aid further structural optimisation. We used compound 3 , a diazirine- and alkyne-containing bi-functional photo-affinity probe analogue of our lead B-THP-T, compound 1 , to identify potential targets of our lead compound in the procyclic form T. brucei. Bi-functional compound 3 was UV cross-linked to its target(s) in vivo and biotin affinity or Cy5.5 reporter tags were subsequently appended by Cu(II)-catalysed azide-alkyne cycloaddition. The biotinylated protein adducts were isolated with streptavidin affinity beads and subsequent LC-MSMS identified the FoF1-ATP synthase (mitochondrial complex V) as a potential target. This target identification was confirmed using various different approaches. We show that (i) compound 1 decreases cellular ATP levels (ii) by inhibiting oxidative phosphorylation (iii) at the FoF1-ATP synthase. Furthermore, the use of GFP-PTP-tagged subunits of the FoF1-ATP synthase, shows that our compounds bind specifically to both the α- and β-subunits of the ATP synthase. The FoF1-ATP synthase is a target of our simplified acetogenin-type analogues. This mitochondrial complex is essential in both procyclic and bloodstream forms of T. brucei and its identification as our target will enable further inhibitor optimisation towards future drug discovery. Furthermore, the photo-affinity labeling technique described here can be readily applied to other drugs of unknown targets to identify their modes of action and facilitate more broadly therapeutic drug design in any pathogen or disease model.Publisher PDFPeer reviewe
    corecore