253 research outputs found
Statistics of Core Lifetimes in Numerical Simulations of Turbulent, Magnetically Supercritical Molecular Clouds
We present measurements of the mean dense core lifetimes in numerical
simulations of magnetically supercritical, turbulent, isothermal molecular
clouds, in order to compare with observational determinations. "Prestellar"
lifetimes (given as a function of the mean density within the cores, which in
turn is determined by the density threshold n_thr used to define them) are
consistent with observationally reported values, ranging from a few to several
free-fall times. We also present estimates of the fraction of cores in the
"prestellar", "stellar'', and "failed" (those cores that redisperse back into
the environment) stages as a function of n_thr. The number ratios are measured
indirectly in the simulations due to their resolution limitations. Our approach
contains one free parameter, the lifetime of a protostellar object t_yso (Class
0 + Class I stages), which is outside the realm of the simulations. Assuming a
value t_yso = 0.46 Myr, we obtain number ratios of starless to stellar cores
ranging from 4-5 at n_thr = 1.5 x 10^4 cm^-3 to 1 at n_thr = 1.2 x 10^5 cm^-3,
again in good agreement with observational determinations. We also find that
the mass in the failed cores is comparable to that in stellar cores at n_thr =
1.5 x 10^4 cm^-3, but becomes negligible at n_thr = 1.2 x 10^5 cm^-3, in
agreement with recent observational suggestions that at the latter densities
the cores are in general gravitationally dominated. We conclude by noting that
the timescale for core contraction and collapse is virtually the same in the
subcritical, ambipolar diffusion-mediated model of star formation, in the model
of star formation in turbulent supercritical clouds, and in a model
intermediate between the previous two, for currently accepted values of the
clouds' magnetic criticality.Comment: 25 pages, 8 figures, ApJ accepted. Fig.1 animation is at
http://www.astrosmo.unam.mx/~e.vazquez/turbulence/movies/Galvan_etal07/Galvan_etal07.htm
Larson's third law and the universality of molecular cloud structure
Larson (1981) first noted a scaling relation between masses and sizes in
molecular clouds that implies that these objects have approximately constant
column densities. This original claim, based upon millimeter observations of
carbon monoxide lines, has been challenged by many theorists, arguing that the
apparent constant column density observed is merely the result of the limited
dynamic range of observations, and that in reality clouds have column density
variations over two orders of magnitudes. In this letter we investigate a set
of nearby molecular clouds with near-infrared excess methods, which guarantee
very large dynamic ranges and robust column density measurements, to test the
validity of Larson's third law. We verify that different clouds have almost
identical average column densities above a given extinction threshold; this
holds regardless of the extinction threshold, but the actual average surface
mass density is a function of the specific threshold used. We show that a
second version of Larson's third law, involving the mass-radius relation for
single clouds and cores, does not hold in our sample, indicating that
individual clouds are not objects that can be described by constant column
density. Our results instead indicate that molecular clouds are characterized
by a universal structure. Finally we point out that this universal structure
can be linked to the log-normal nature of cloud column density distributions.Comment: 5 pages, 4 figures, A&A in press (letter
On the Effects of Projection on Morphology
We study the effects of projection of three-dimensional (3D) data onto the
plane of the sky by means of numerical simulations of turbulence in the
interstellar medium including the magnetic field, parameterized cooling and
diffuse and stellar heating, self-gravity and rotation. We compare the
physical-space density and velocity distributions with their representation in
position-position-velocity (PPV) space (``channel maps''), noting that the
latter can be interpreted in two ways: either as maps of the column density's
spatial distribution (at a given line-of-sight (LOS) velocity), or as maps of
the spatial distribution of a given value of the LOS velocity (weighted by
density). This ambivalence appears related to the fact that the spatial and PPV
representations of the data give significantly different views. First, the
morphology in the channel maps more closely resembles that of the spatial
distribution of the LOS velocity component than that of the density field, as
measured by pixel-to-pixel correlations between images. Second, the channel
maps contain more small-scale structure than 3D slices of the density and
velocity fields, a fact evident both in subjective appearance and in the power
spectra of the images. This effect may be due to a pseudo-random sampling
(along the LOS) of the gas contributing to the structure in a channel map: the
positions sampled along the LOS (chosen by their LOS velocity) may vary
significantly from one position in the channel map to the next.Comment: 6 figures. To appear in the March 20th volume in Ap
Formation and Collapse of Quiescent Cloud Cores Induced by Dynamic Compressions
(Abridged) We present numerical hydrodynamical simulations of the formation,
evolution and gravitational collapse of isothermal molecular cloud cores. A
compressive wave is set up in a constant sub-Jeans density distribution of
radius r = 1 pc. As the wave travels through the simulation grid, a
shock-bounded spherical shell is formed. The inner shock of this shell reaches
and bounces off the center, leaving behind a central core with an initially
almost uniform density distribution, surrounded by an envelope consisting of
the material in the shock-bounded shell, with a power-law density profile that
at late times approaches a logarithmic slope of -2 even in non-collapsing
cases. The resulting density structure resembles a quiescent core of radius <
0.1 pc, with a Bonnor-Ebert-like (BE-like) profile, although it has significant
dynamical differences: it is initially non-self-gravitating and confined by the
ram pressure of the infalling material, and consequently, growing continuously
in mass and size. With the appropriate parameters, the core mass eventually
reaches an effective Jeans mass, at which time the core begins to collapse.
Thus, there is necessarily a time delay between the appearance of the core and
the onset of its collapse, but this is not due to the dissipation of its
internal turbulence as it is often believed. These results suggest that
pre-stellar cores may approximate Bonnor-Ebert structures which are however of
variable mass and may or may not experience gravitational collapse, in
qualitative agreement with the large observed frequency of cores with BE-like
profiles.Comment: Accepted for publication in ApJ. Associated mpeg files can be found
in http://www.astrosmo.unam.mx/~g.gomez/publica.htm
Evidence for transient clumps and gas chemical evolution in the CS core of L673
We present FCRAO maps as well as combined BIMA and FCRAO maps of the high
density molecular emission towards the CS core in the L673 region. With the
FCRAO telescope, we mapped the emission in the CS(2-1), C34S(2-1), HCO+(1-0),
and H13CO+(1-0) lines. The high density molecular emission, which arises from a
filamentary structure oriented in the NW-SE direction, shows clear
morphological differences for each molecule. We find that HCO+ has an extremely
high optical depth, and that the H13CO+ emission is well correlated with submm
sources. The BIMA and FCRAO combined maps recover emission from a lot of other
structure which was previously undetected or only marginally detected, and show
an overall aspect of a filamentary structure connecting several intense clumps.
We found a total 15 clumps in our combined data cube, all of them resolved by
our angular resolution, with diameters in the 0.03-0.09 pc range. We find a
clear segregation between the northern and southern region of the map: the
northern section shows the less chemically evolved gas and less massive but
more numerous clumps, while the southern region is dominated by the largest and
most massive clump, and contains the more evolved gas, as traced by emission of
late-time molecules. We find that the derived clump masses are below the virial
mass, and that the clumps masses become closer to the virial mass when they get
bigger and more massive. This supports the idea that these clumps must be
transient, and only the more massive ones have a chance to last long enough to
form stars. The clumps we detect are probably in an earlier evolutionary stage
than the ``starless cores'' reported recently in the literature. Only the most
massive one has properties similar to a ``starless core''.Comment: 12 pages, 8 figures, accepted for publication in Astronomy &
Astrophysics; minor revisions after language editin
On the properties of fractal cloud complexes
We study the physical properties derived from interstellar cloud complexes
having a fractal structure. We first generate fractal clouds with a given
fractal dimension and associate each clump with a maximum in the resulting
density field. Then, we discuss the effect that different criteria for clump
selection has on the derived global properties. We calculate the masses, sizes
and average densities of the clumps as a function of the fractal dimension
(D_f) and the fraction of the total mass in the form of clumps (epsilon). In
general, clump mass does not fulfill a simple power law with size of the type
M_cl ~ (R_cl)**(gamma), instead the power changes, from gamma ~ 3 at small
sizes to gamma<3 at larger sizes. The number of clumps per logarithmic mass
interval can be fitted to a power law N_cl ~ (M_cl)**(-alpha_M) in the range of
relatively large masses, and the corresponding size distribution is N_cl ~
(R_cl)**(-alpha_R) at large sizes. When all the mass is forming clumps
(epsilon=1) we obtain that as D_f increases from 2 to 3 alpha_M increases from
~0.3 to ~0.6 and alpha_R increases from ~1.0 to ~2.1. Comparison with
observations suggests that D_f ~ 2.6 is roughly consistent with the average
properties of the ISM. On the other hand, as the fraction of mass in clumps
decreases (epsilon<1) alpha_M increases and alpha_R decreases. When only ~10%
of the complex mass is in the form of dense clumps we obtain alpha_M ~ 1.2 for
D_f=2.6 (not very different from the Salpeter value 1.35), suggesting this a
likely link between the stellar initial mass function and the internal
structure of molecular cloud complexes.Comment: 32 pages, 13 figures, 1 table. Accepted for publication in Ap
Why are most molecular clouds not gravitationally bound?
The most recent observational evidence seems to indicate that giant molecular
clouds are predominantly gravitationally unbound objects. In this paper we show
that this is a natural consequence of a scenario in which cloud-cloud
collisions and stellar feedback regulate the internal velocity dispersion of
the gas, and so prevent global gravitational forces from becoming dominant.
Thus, while the molecular gas is for the most part gravitationally unbound,
local regions within the denser parts of the gas (within the clouds) do become
bound and are able to form stars. We find that the observations, in terms of
distributions of virial parameters and cloud structures, can be well modelled
provided that the star formation efficiency in these bound regions is of order
5 - 10 percent. We also find that in this picture the constituent gas of
individual molecular clouds changes over relatively short time scales,
typically a few Myr.Comment: 9 pages, 8 figures, accepted for publication in MNRA
Virialization of high redshift dark matter haloes
We present results of a study of the virial state of high redshift dark
matter haloes in an N-body simulation. We find that the majority of collapsed,
bound haloes are not virialized at any redshift slice in our study ()
and have excess kinetic energy. At these redshifts, merging is still rampant
and the haloes cannot strictly be treated as isolated systems. To assess if
this excess kinetic energy arises from the environment, we include the surface
pressure term in the virial equation explicitly and relax the assumption that
the density at the halo boundary is zero. Upon inclusion of the surface term,
we find that the haloes are much closer to virialization, however, they still
have some excess kinetic energy. We report trends of the virial ratio including
the extra surface term with three key halo properties: spin, environment, and
concentration. We find that haloes with closer neighbors depart more from
virialization, and that haloes with larger spin parameters do as well. We
conclude that except at the lowest masses (M < 10^6 \Msun), dark matter
haloes at high redshift are not fully virialized. This finding has interesting
implications for galaxy formation at these high redshifts, as the excess
kinetic energy will impact the subsequent collapse of baryons and the formation
of the first disks and/or baryonic structures.Comment: 5 pages, Accepted to MNRA
- …
